Principles of the Bayesian automatic adaptive quadrature
Keywords:
numerical integration
automatic adaptive quadrature
integrand profile analysis
reliability
Bayesian inference
Abstract
The addition of Bayesian inference to the automatic adaptive quadrature scheme developed in QUADPACK} (R. Piessens, E. deDoncker-Kapenga, C.W. Uberhuber, and D.K. Kahaner, QUADPACK, a quadrature package for automatic integration, Springer, Berlin, 1983) significantly increases the output reliability under the lack of a priori knowledge on the behavior of the function over the integration domain. In the present paper, we review the progress obtained until now along these lines.
Section
Section 1. Numerical methods and applications
References
- Piessens R., deDoncker-Kapenga E., Überhuber C.W., Kahaner D.K. QUADPACK, a subroutine package for automatic integration. Berlin: Springer Verlag, 1983.
- Davis P.J., Rabinowitz P. Methods of Numerical Integration, Second edition. Orlando (Fla), USA: Academic Press, 1984.
- Krommer A.R., Ueberhuber C.W. Computational Integration. Philadelphia: SIAM, 1998.
- Lyness J.N. When not to use an automatic quadrature routine // SIAM Rev. 1983. 25. 63-87.
- Adam Gh., Nobile A. Product integration rules at Clenshaw-Curtis and related points: a robust implementation // IMA J. Numerical Analysis. 1991. 11. 271-296.
- Adam Gh. Case studies in the numerical solution of oscillatory integrals // Romanian J. Phys. 1993. 38. 527-538.
- NAG Ltd., NAG Fortran Library Manual - Mark 17, Oxford, UK, 1996.
- Visual Numerics Inc., IMSL MATH/LIBRARY: User’s Manual - Version 3.0, Houston, TX, 1994.
- Plakida N.M., Anton L., Adam S., Adam Gh. Exchange and spin-fluctuation mechanisms of superconductivity in cuprates // Zh. Exp. Teor. Fiz. 2003. 124. 367-378; English transl.: J. Exp. Theor. Phys. 2003. 97. 331-342.
- Chern-Simons gauge theory of underdoped cuprate superconductors // Phys. Rev. B 1998. 58. 5808-5824.
- Marchetti P.A., Jian-Hui Dai, Zhao-Bin Su, Lu Yu. Gauge field theory of transport and magnetic relaxation in underdoped cuprates // J. Phys.: Cond. Matter 2000. 12. L329-L336.
- Chu C.W. High Temperature Superconducting Materials: Present Status, Future Challenges, and One Recent Example - the Superconducting Ferromagnet // Physica C 2000. 341-348. 25-30.
- Sv andulescu A., Mic sicu c S., C^ arstoiu F., Florescu A., Greiner W. Role of the higher static deformation of fragments in the cold binary fission of sp252Cf // Phys. Rev. C 1998. 57. 2321-2328.
- Adam Gh., Adam S. Increasing reliability of Gauss-Kronrod quadrature by Eratosthenes» sieve method // Computer Phys. Commun. 2001. 135. 261-277.
- Adam Gh., Adam S. Reliability Conditions in Quadrature Algorithms // Computer Phys. Commun. 2003. 154. 49-64.
- Justice J.H. Maximum Entropy and Bayesian Methods in Applied Statistics. Cambridge: Cambridge University Press, 1986. emphE.T. Jaynes. Bayesian methods: An introductory tutorial.
- Adam Gh., Adam S., Tifrea A., Neacsu A. Resolving thin boundary layers in numerical quadrature // Romanian Reports in Physics. 2006. 58, N 2. 107-122.
- Adam Gh., Adam S. The boundary layer problem in Bayesian adaptive quadrature // Physics of Particles and Nuclei Letters. 2008. 5, N 3. 269-273.
- Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes in Fortran 77 - The Art of Scientific Computing. Second Edition. Cambridge: Cambridge University Press, UK, 2001.