Principles of the Bayesian automatic adaptive quadrature

Authors

  • Gh. Adam
  • S. Adam

Keywords:

numerical integration
automatic adaptive quadrature
integrand profile analysis
reliability
Bayesian inference

Abstract

The addition of Bayesian inference to the automatic adaptive quadrature scheme developed in QUADPACK} (R. Piessens, E. deDoncker-Kapenga, C.W. Uberhuber, and D.K. Kahaner, QUADPACK, a quadrature package for automatic integration, Springer, Berlin, 1983) significantly increases the output reliability under the lack of a priori knowledge on the behavior of the function over the integration domain. In the present paper, we review the progress obtained until now along these lines.


Downloads

Published

2009-10-28

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

Gh. Adam

S. Adam


References

  1. Piessens R., deDoncker-Kapenga E., Überhuber C.W., Kahaner D.K. QUADPACK, a subroutine package for automatic integration. Berlin: Springer Verlag, 1983.
  2. Davis P.J., Rabinowitz P. Methods of Numerical Integration, Second edition. Orlando (Fla), USA: Academic Press, 1984.
  3. Krommer A.R., Ueberhuber C.W. Computational Integration. Philadelphia: SIAM, 1998.
  4. Lyness J.N. When not to use an automatic quadrature routine // SIAM Rev. 1983. 25. 63-87.
  5. Adam Gh., Nobile A. Product integration rules at Clenshaw-Curtis and related points: a robust implementation // IMA J. Numerical Analysis. 1991. 11. 271-296.
  6. Adam Gh. Case studies in the numerical solution of oscillatory integrals // Romanian J. Phys. 1993. 38. 527-538.
  7. NAG Ltd., NAG Fortran Library Manual - Mark 17, Oxford, UK, 1996.
  8. Visual Numerics Inc., IMSL MATH/LIBRARY: User’s Manual - Version 3.0, Houston, TX, 1994.
  9. Plakida N.M., Anton L., Adam S., Adam Gh. Exchange and spin-fluctuation mechanisms of superconductivity in cuprates // Zh. Exp. Teor. Fiz. 2003. 124. 367-378; English transl.: J. Exp. Theor. Phys. 2003. 97. 331-342.
  10. Chern-Simons gauge theory of underdoped cuprate superconductors // Phys. Rev. B 1998. 58. 5808-5824.
  11. Marchetti P.A., Jian-Hui Dai, Zhao-Bin Su, Lu Yu. Gauge field theory of transport and magnetic relaxation in underdoped cuprates // J. Phys.: Cond. Matter 2000. 12. L329-L336.
  12. Chu C.W. High Temperature Superconducting Materials: Present Status, Future Challenges, and One Recent Example - the Superconducting Ferromagnet // Physica C 2000. 341-348. 25-30.
  13. Sv andulescu A., Mic sicu c S., C^ arstoiu F., Florescu A., Greiner W. Role of the higher static deformation of fragments in the cold binary fission of sp252Cf // Phys. Rev. C 1998. 57. 2321-2328.
  14. Adam Gh., Adam S. Increasing reliability of Gauss-Kronrod quadrature by Eratosthenes» sieve method // Computer Phys. Commun. 2001. 135. 261-277.
  15. Adam Gh., Adam S. Reliability Conditions in Quadrature Algorithms // Computer Phys. Commun. 2003. 154. 49-64.
  16. Justice J.H. Maximum Entropy and Bayesian Methods in Applied Statistics. Cambridge: Cambridge University Press, 1986. emphE.T. Jaynes. Bayesian methods: An introductory tutorial.
  17. Adam Gh., Adam S., Tifrea A., Neacsu A. Resolving thin boundary layers in numerical quadrature // Romanian Reports in Physics. 2006. 58, N 2. 107-122.
  18. Adam Gh., Adam S. The boundary layer problem in Bayesian adaptive quadrature // Physics of Particles and Nuclei Letters. 2008. 5, N 3. 269-273.
  19. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes in Fortran 77 - The Art of Scientific Computing. Second Edition. Cambridge: Cambridge University Press, UK, 2001.