Teleportation and local reality


  • D.A. Slavnov


algebraic approach


In the framework of an algebraic approach, we consider a quantum teleportation procedure. It turns out that using the quantum measurement nonlocality hypothesis is unnecessary for describing this procedure. We study the question of what material objects are information carriers for quantum teleportation.






Section 1. Numerical methods and applications

Author Biography

D.A. Slavnov


  1. The physics of quantum information: quantum cryptography, quantum teleportation, quantum computation / D. Bouwmeester, A. Ekert, and A. Zeilinger (Eds.). Berlin: Springer, 2000.
  2. Slavnov D.A. Measurements and mathematical formalism of quantum mechanics // Phys. Part. Nucl. 2007. 38. 147-176.
  3. Slavnov D.A. The possibility of reconciling quantum mechanics with classical probability theory // Theor. Math. Phys. 2006. 149. 1690-1701.
  4. Dixmier J. Les C^*-algebres et leurs représentations. Paris: Gauthier-Villars, 1969.
  5. Kolmogorov A.N. Foundations of the theory of probability. New York: Chelsea, 1956.
  6. Neveu J. Mathematical foundations of the calculus of probability. San Francisco: Holden-Day, 1965.
  7. Emch G.G. Algebraic methods in statistical mechanics and quantum field theory. New York: Wiley, 1972.
  8. Einstein A., Podolsky B., and Rosen N. Can quantum-mechanical description of physical reality be considered complete? // Phys. Rev. 1935. 47. 777-780.
  9. Bohm D. Quantum theory. London: Constable, 1952.
  10. Bouwmeester D., Ekert A., and Zeilinger A. Quantum dense coding and quantum teleportation // The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation / D. Bouwmeester, A. Ekert, and A. Zeilinger (Eds.). Berlin: Springer, 2000. 49-92.
  11. Slavnov D.A. Quantum teleportation // Theor. Math. Phys. 2008. 157. 1433-1447.