Convergence of a continuous analog of Newton's method for solving nonlinear equations
Authors
-
T. Zhanlav
-
O. Chuluunbaatar
Keywords:
iterative methods
rate of convergence
Newton-type methods
nonlinear equations
Abstract
The influence of the parameter in the continuous analog of Newton's method (CANM) on the convergence and on the convergence rate is studied. A τ-region of convergence of CANM for both scalar equations and equations in a Banach space is obtained. Some almost optimal choices of the parameter are proposed. It is also shown that the well-known higher order convergent iterative methods lead to the CANM with an almost optimal parameter. Several sufficient convergence conditions for these methods are obtained.
Section
Section 1. Numerical methods and applications
References
- Aslam Noor M., Ahmad F. Numerical comparison of iterative methods for solving nonlinear equations // Appl. Math. Comput. 2006. 180. 167-172.
- Aslam Noor M., Inayat Noor Kh. Three step iterative methods for nonlinear equations // Appl. Math. Comput. 2006. 183. 322-327.
- Aslam Noor M., Inayat Noor Kh. Some iterative schemes for non-linear equations // Appl. Math. Comput. 2006. 183. 774-779.
- Aslam Noor M., Inayat Noor Kh., Mohyud-Din S.T., Shabbir A. An iterative method with cubic convergence for nonlinear equations // Appl. Math. Comput. 2006. 183. 1249-1255.
- Chen J. Some new iterative methods with three order convergence // Appl. Math. Comput. 2006. 181. 1519-1522.
- Ezqnerro J.A., Hernandez M.A. On Halley-type iterations with free second derivative // J. Comput. Appl. Math. 2004. 170. 455-459.
- Homeier H.H. H. On Newton-type methods with cubic convergence // Appl. Math. Comput. 2005. 176. 425-432.
- Kou J., Li Y., Wang X. Modification of Newton method with third-order convergence // Appl. Math. Comput. 2006. 181. 1106-1111.
- Kou J., Li Y., Wang X. Modified Halley’s method free from second derivative // Appl. Math. Comput. 2006. 183. 704-708.
- Kanvar M.V., Kukreja V.K., Singh S. On some third order iterative methods for solving non-linear equations // Appl. Math. Comput. 2005. 171. 272-280.
- Frontini M., Sormani E. Some variant of Newton’s method with third-order convergence // J. Comput. Appl. Math. 2003. 140. 419-426.
- Weerakon S., Fernando T.I. A variant of Newton’s method with accelerated third-order convergence // Appl. Math. Lett. 2000. 13. 87-93.
- Zhanlav T., Puzynin I.V. The convergence of iteration based on a continuous analogue of Newton’s method // Comput. Math. Math. Phys. 1992. 32. 729-737.
- Ermakov V.V., Kalitkin N.N. Optimal step and regularization of Newton’s method // Zh. Vych. Math. Math. Fiz. 1981. 21. 491-497.
- Zhanlav T., Chuluunbaatar O. High-order convergent iterative methods for solving nonlinear equations // Bulletin of Peoples» Friendship University of Russia. 2009. N 3. 70-78.
- Mi X. and Wang X. A R-order four iteration in Banach space // J. Comput. Anal. Appl. 2005. 7. 305-318.
- Zhanlav T., Mijiddorj R., and Chuluunbaatar O. The continuous analogue of Newton’s method for finding eigenvalues and eigenvectors of the matrices // Tver University Vestnik. 2008. 14. 27-37 (in Russian).
- Zhanlav T.,Chuluunbaatar O., and Ankhbayar L. On a Newton-type method with fourth- and fifth-order convergence // Tver University Vestnik (to appear).
- Hernandez M.A. Second-derivative-free variant of the Chebyshev method for nonlinear equations // J. Optim. Theor. Appl. 2000. 104. 501-515.
- Dembo R.S., Eisenstat S.C., and Steihang T. Inexact Newton methods // SIAM J. Numer. Anal. 1982. 19. 400-408.
- Cătinas. E. The inexact, inexact perturbed, and quasi-Newton methods are equivalent methods // Math. Comp. 2004. 74. 291-301.