A Multipole algorithm for solving a fractional generalization of the helmholtz equation

Authors

DOI:

https://doi.org/10.26089/NumMet.v22r208

Keywords:

fractional generalization of Helmholtz equation, fractional Laplacian, fundamental solution, multipole expansion, multipole method, numerical algorithm

Abstract

The problem of constructing an efficient numerical algorithm for solving a fractional generalization of the Helmholtz equation with the fractional Laplacian is considered. A multipole expansion based on the factorized representation of the fundamental solution of the considered equation is constructed. A numerical method for computing the values of Fox H-functions from the multipole expansion is proposed. A modification of the multipole algorithm for solving the considered fractional generalization of the Helmholtz equation is developed. Numerical results demonstrating the efficiency of the proposed algorithms are discussed.

Author Biography

N.S. Belevtsov

References

  1. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Nauka Tekh., Minsk, 1987; Gordon and Breach, Yverdon, 1993).
  2. V. V. Uchaikin, Method of Fractional Derivatives (Artishok, Ul’yanovsk, 2008) [in Russian].
  3. R. Raghavan, “Fractional Diffusion: Performance of Fractured Wells,” J. Petrol. Sci. Eng. 92-93, 167-173 (2012).
  4. D. Stan, F. del Teso, and J. L. Vázquez, “Finite and Infinite Speed of Propagation for Porous Medium Equations with Nonlocal Pressure,” J. Differ. Equ. 260 (2), 1154-1199 (2016).
  5. C. Pozrikidis, The Fractional Laplacian (CRC Press, Boca Raton, 2016).
  6. A. V. Abramyan, V. A. Nogin, and S. G. Samko, “Fractional Powers of the Operator -|x|²Δ in Lp Spaces,” Differ. Uravn. 32 (2), 275-276 (1996) [Differ. Equ. 32 (2), 281-283 (1996)].
  7. B. Barrios, E. Colorado, A. De Pablo, and U. Sánchez, “On Some Critical Problems for the Fractional Laplacian Operator,” J. Differ. Equ. 252 (11), 6133-6162 (2012).
  8. H. Chen, P. Felmer, and A. Quaas, “Large Solutions to Elliptic Equations Involving Fractional Laplacian,” Annales de l’Institut Henri Poincaré (C), Analyse Non Linéaire 32 (6), 1199-1228 (2015). doi 10.1016/j.anihpc.2014.08.00
  9. J. L. Vázquez, A. de Pablo, F. Quirós, and A. Rodriguez, “Classical Solutions and Higher Regularity for Nonlinear Fractional Diffusion Equations,” J. Eur. Math. Soc. 19 (7), 1949-1975 (2017).
  10. E. C. Aifantis, “Fractional Generalizations of Gradient Mechanics,” in Handbook of Fractional Calculus with Applications (De Gruyter, Berlin, 2019), Vol. 4, pp. 241-262.
  11. A. D. Polyanin, Linear Equations of Mathematical Physics (Fizmatlit, Moscow, 2001) [in Russian].
  12. L. Greengard and V. Rokhlin, “A Fast Algorithm for Particle Simulations,” J. Comput. Phys. 135 (2), 280-292 (1997).
  13. N. A. Gumerov and R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions (Elsevier, Amsterdam, 2005).
  14. N. S. Belevtsov and S. Yu. Lukashchuk, “Multipole Expansion of the Fundamental Solution of a Fractional Degree of the Laplace Operator,” in Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. (VINITI, Moscow, 2020), Vol. 176, pp. 26-33.
  15. N. S. Belevtsov and S. Yu. Lukashchuk, “A Parallel Numerical Algorithm for Solving Fractional Poisson Equation,” in Proc. Int. Conf. on Parallel Computational Technologies, Kaliningrad, Russia, April 2-April 4, 2019 (South Ural State Univ., Chelyabinsk, 2019), pp. 165-174.
  16. N. S. Belevtsov and S. Yu. Lukashchuk, “Factorization of the Fundamental Solution to Fractional Helmholtz Equation,” Lobachevskii J. Math. 42 (1), 57-62 (2021).
  17. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series , Vol. 2: Special Functions (Nauka, Moscow, 1983; Gordon and Breach, New York, 1986).
  18. A. A. Kilbas and M. Saigo, H-transforms: Theory and Applications (CRC Press, Boca Raton, 2004).
  19. R. Gorenflo, J. Loutchko, and Y. Luchko, “Computation of the Mittag-Leffler Function Eα, β(z) and Its Derivative,” Fract. Calc. Appl. Anal. 5 (4), 491-518 (2002).
  20. Y. Luchko, “Algorithms for Evaluation of the Wright Function for the Real Arguments’ Values,” Fract. Calc. Appl. Anal. 11 (1), 57–-75 (2008).
  21. R. D. Mindlin and N. N. Eshel, “On First Strain-Gradient Theories in Linear Elasticity,” Int. J. Solids Struct. 4 (1), 109-124 (1968).
  22. C. Q. Ru and E. C. Aifantis, “A Simple Approach to Solve Boundary-Value Problems in Gradient Elasticity,” Acta Mech. 101 (1), 59-68 (1993).
  23. B. G. Korenev, Introduction to the Theory of Bessel Functions (Nauka, Moscow, 1971) [in Russian].

Published

17-05-2021

How to Cite

Белевцов Н.С. A Multipole Algorithm for Solving a Fractional Generalization of the Helmholtz Equation // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2021. 22. 109-120. doi 10.26089/NumMet.v22r208

Issue

Section

Methods and algorithms of computational mathematics and their applications