Some features of numerical diagnostics of instantaneous blow-up of the solution by the example of solving the equation of slow diffusion
Authors
-
I.V. Prigorniy
-
A.A. Panin
-
D.V. Lukyanenko
Keywords:
partial differential equations
numerical diagnostics of the solution’s blow-up
instantaneous blow-up
ill-posed problems
Abstract
The paper demonstrates how the method of a posteriori estimation of the order of accuracy for the difference scheme according to the Richardson extrapolation method allows one to conclude that the formulation of the numerically solved initial-boundary value problem for a partial differential equation is ill-posed (in the sense of the absence of a solution). This is important in a situation when the ill-posedness of the formulation is not analytically proved yet or cannot be proved in principle.
Section
Methods and algorithms of computational mathematics and their applications
References
- E. Mitidieri and S. I. Pokhozhaev, “A Priori Estimates and Blow-up of Solutions to Nonlinear Partial Differential Equations and Inequalities,” Tr. Mat. Inst. Im. V.A. Steklova, Ross. Akad. Nauk 234, 3-383 (2001) [Proc. Steklov Inst. Math. 234, 1-362 (2001)].
- H. A. Levine, “Some Nonexistence and Instability Theorems for Solutions of Formally Parabolic Equations of the Form Put = -Au + F(u),” Arch. Rational Mech. Anal. 51 (5), 371-386 (1973).
- V. K. Kalantarov and O. A. Ladyzhenskaya, “The Occurrence of Collapse for Quasilinear Equations of Parabolic and Hyperbolic Types,” Zap. Nauch. Semin. Leningr. Otd. Mat. Inst. Steklova 69, 77-102 (1977) [J. Math. Sci. 10 (1), 53-70 (1978)].
- A. G. Sveshnikov, A. B. Al’shin, M. O. Korpusov, and Yu. D. Pletner, Linear and Nonlinear Equations of Sobolev Type (Fizmatlit, Moscow, 2007) [in Russian].
- M. O. Korpusov, Blow-up in Nonclassical Wave Equations (Editorial, Moscow, 2010) [in Russian].
- M. O. Korpusov, “Blow-up of Ion Acoustic Waves in a Plasma,” Mat. Sb. 202 (1), 37-64 (2011) [Sb. Math. 202 (1), 35-60 (2011)].
- M. O. Korpusov, A. G. Sveshnikov, and E. V. Yushkov, Methods of the Theory of Solution Blow-Up for Nonlinear Equations of Mathematical Physics (Faculty of Physics, Moscow Univ., Moscow, 2014) [in Russian].
- A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in Quasilinear Parabolic Equations (Nauka, Moscow, 1987; Gruyter, Berlin, 1995).
- V. A. Galaktionov and S. I. Pohozaev, “Third-Order Nonlinear Dispersive Equations: Shocks, Rarefaction, and Blowup Waves,” Zh. Vychisl. Mat. Mat. Fiz. 48 (10), 1819-1846 (2008) [Comput. Math. Math. Phys. 48 (10), 1784-1810 (2008)].
- D. E. Pelinovsky and C. Xu, “On Numerical Modelling and the Blow-up Behavior of Contact Lines with a 180° Contact Angle,” J. Eng. Math. 92, 31-44 (2015).
- A. Cangiani, E. H. Georgoulis, I. Kyza, and S. Metcalfe, “Adaptivity and Blow-up Detection for Nonlinear Evolution Problems,” arXiv preprint: 1502.03250v1 [math.NA] (Cornell Univ. Library, Ithaca, 2015), available at
https://arxiv.org/abs/1502.03250/.
- C.-H. Cho, “Numerical Detection of Blow-up: A New Sufficient Condition for Blow-up,” Japan J. Indust. Appl. Math. 33 (1), 81-98 (2016).
- R. Haynes and C. Turner, “A Numerical and Theoretical Study of Blow-up for a System of Ordinary Differential Equations Using the Sundman Transformation,” Atl. Electron. J. Math. 2 (1), 1-13 (2007).
- M. Berger and R. V. Kohn, “A Rescaling Algorithm for the Numerical Calculation of Blowing-up Solutions,” Commun. Pure Appl. Math. 41 (6), 841-863 (1988).
- M. O. Korpusov and D. V. Lukyanenko, “Instantaneous Blow-up Versus Local Solvability for One Problem of Propagation of Nonlinear Waves in Semiconductors,” J. Math. Anal. Appl. 459 (1), 159-181 (2018).
- M. O. Korpusov, “Critical Exponents of Instantaneous Blow-up or Local Solubility of Non-Linear Equations of Sobolev Type,” Izv. Ross. Akad. Nauk, Ser. Mat. 79 (5), 103-162 (2015) [Izv. Math. 79 (5), 955-1012 (2015)].
- M. O. Korpusov and A. A. Panin, “Instantaneous Blow-up Versus Local Solubility of the Cauchy Problem for a Two-Dimensional Equation of a Semiconductor with Heating,” Izv. Ross. Akad. Nauk, Ser. Mat. 83 (6), 104-132 (2019) [Izv. Math. 83 (6), 1174-1200 (2019)].
- G. A. Sviridyuk, “On the General Theory of Operator Semigroups,” Usp. Mat. Nauk 49 (4), 47-74 (1994) [Russ. Math. Surv. 49 (4), 45-74 (1994)].
- M. O. Korpusov, A. V. Ovchinnikov, and A. A. Panin, “Instantaneous Blow-up Versus Local Solvability of Solutions to the Cauchy Problem for the Equation of a Semiconductor in a Magnetic Field,” Math. Meth. Appl. Sci. 41 (17), 8070-8099 (2018).
- V. A. Vasilchenko, M. O. Korpusov, D. V. Lukyanenko, and A. A. Panin, “A Study of Self-Oscillation Instability in Varicap-Based Electrical Networks: Analytical and Numerical Approaches,” Vychisl. Metody Programm. 20 (3), 323-336 (2019).
- I. I. Kolotov and A. A. Panin, “On Nonextendable Solutions and Blow-Ups of Solutions of Pseudoparabolic Equations with Coercive and Constant-Sign Nonlinearities: Analytical and Numerical Study,” Mat. Zametki 105 (5), 708-723 (2019) [Math. Notes 105 (5), 694-706 (2019)].
- M.-N. Le Roux, “Numerical Solution of Fast Diffusion or Slow Diffusion Equations,” J. Comput. Appl. Math. 97 (1-2), 121-136 (1998).
- J. G. Berryman and C. J. Holland, “Stability of the Separable Solution for Fast Diffusion,” Arch. Rational Mech. Anal. 74 (4), 379-388 (1980).
- E. A. Alshina, N. N. Kalitkin, and P. V. Koryakin, “Diagnostics of Singularities of Exact Solutions in Computations with Error Control,” Zh. Vychisl. Mat. Mat. Fiz. 45 (10), 1837-1847 (2005) [Comput. Math. Math. Phys. 45 (10), 1769-1779 (2005)].
- N. N. Kalitkin, A. B. Al’shin, E. A. Al’shina, and B. V. Rogov, Calculations on Quasi-Uniform Grids (Fizmatlit, Moscow, 2005) [in Russian].
- A. B. Al’shin and E. A. Al’shina, “Numerical Diagnosis of Blow-up of Solutions of Pseudoparabolic Equations,” J. Math. Sci. 148 (1), 143-162 (2008).
- J. Hoffman and C. Johnson, “Blow up of Incompressible Euler Solutions,” BIT Numer. Math. 48 (2), 285-307 (2008).
- E. Hairer and G. Wanner, Solving Ordinary Differential Equations. Stiff and Differential-Algebraic Problems (Springer, Berlin, 2002).
- N. N. Kalitkin, “Numerical Methods of Solution of Stiff Systems,” Mat. Model. 7 (5), 8-11 (1995).
- H. H. Rosenbrock, “Some General Implicit Processes for the Numerical Solution of Differential Equations,” Comput. J. 5 (4), 329-330 (1963).
- A. B. Al’shin, E. A. Al’shina, N. N. Kalitkin, and A. B. Koryagina, “Rosenbrock Schemes with Complex Coefficients for Stiff and Differential Algebraic Systems,” Zh. Vychisl. Mat. Mat. Fiz. 46 (8), 1392-1414 (2006) [Comput. Math. Math. Phys. 46 (8), 1320-1340 (2006)].