DOI: https://doi.org/10.26089/NumMet.v22r207

Explicit higher-order schemes for molecular dynamics problems

Authors

  • E.V. Vorozhtsov
  • S.P. Kiselev

Keywords:

molecular dynamics
Hamilton equations
symplectic difference schemes
stability

Abstract

The Runge–Kutta–Nyström (RKN) explicit symplectic difference schemes are considered with a number of stages from 1 to 5 for the numerical solution of molecular dynamics problems described by systems with separable Hamiltonians. For the numbers of stages 2 and 3, the parameters of the RKN schemes are obtained using the Gröbner basis technique. For the number of stages 4 and 5, new schemes were found using the Nelder–Mead numerical optimization method. In particular, four new schemes are obtained for the number of stages 4. For the number of stages 5, three new schemes are obtained in addition to the four schemes, which are well-known in the literature. For each specific number of stages, a scheme is found being the best in terms of the minimum of the leading term of the approximation error. Verification of the schemes is carried out on a problem that has an exact solution. It is shown that the symplectic five-stage RKN scheme provides a more accurate conservation of the total energy balance of the particle system than schemes of lower orders of accuracy. The stability studies of the schemes were performed using the Mathematica software package.


Published

2021-05-11

Issue

Section

Methods and algorithms of computational mathematics and their applications

Author Biographies

E.V. Vorozhtsov

S.P. Kiselev


References

  1. S. P. Kiselev, E. V. Vorozhtsov, and V. M. Fomin, Foundations of Fluid Mechanics with Applications: Problem Solving Using Mathematica (Birkhäuser, Boston, 1999).}
  2. S. K. Godunov, S. P. Kiselev, I. M. Kulikov, and V. I. Mali, Modeling of Shockwave Processes in Elastic-plastic Materials at Different (Atomic, Meso and Thermodynamic) Structural Levels (Inst. Komp’yut. Issled., Moscow-Izhevsk, 2014) [in Russian].
  3. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics , Vol. 1: Mechanics (Nauka, Moscow, 1973; Pergamon, Oxford, 1977).
  4. H. R. Lewis, D. C. Barnes, and K. J. Melendez, “The Liouville Theorem and Accurate Plasma Simulation,” J. Comput. Phys. 69 (2). 267-282 (1987).
  5. R. D. Ruth, “A Canonical Integration Technique,” IEEE Trans. Nucl. Sci. NS-30} (4), 2669-2671 (1983).
  6. M. Tuckerman and B. J. Berne, “Reversible Multiple Time Scale Molecular Dynamics,” J. Chem. Phys. 97 (3), 1990-2001 (1992).
  7. E. Forest and R. D. Ruth, “Fourth-Order Symplectic Integration,” Physica D 43 (1), 105-117 (1990).
  8. I. P. Omelyan, I. M. Mryglod, and R. Folk, “Optimized Verlet-like Algorithms for Molecular Dynamics Simulations,” Phys. Rev. E 65 (2002). doi 10.1103/PhysRevE.65.05670
  9. E. J. Nyström}, Über die numerische Integration von Differentialgleichungen (Acta Soc. Sci. Fenn., Helsingfors, 1925) [in German].
  10. L. Verlet, “Computer ’Experiments’ on Classical Fluids.I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159 (1), 98-103 (1967).
  11. Yu. B. Suris, “The Canonicity of Mappings Generated by Runge-Kutta Type Methods when Integrating the Systems ddot{x} =-partial U/partial x,” Zh. Vychisl. Mat. Mat. Fiz. 29 (2), 202-211 (1989)[USSR Comput. Math. Math. Phys. 29 (1), 138-144 (1989)].}
  12. V. N. Sofronov and V. E. Shemarulin, “Classification of Explicit Three-Stage Symplectic Difference Schemes for the Numerical Solution of Natural Hamiltonian Systems: A Comparative Study of the Accuracy of High-Order Schemes on Molecular Dynamics Problems,” Zh. Vychisl. Mat. Mat. Fiz. 56 (4), 551-571 (2016) [Comput. Math. Math. Phys. 56 (4), 541-560 (2016)].
  13. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems (Spinger, Berlin, 1993; Mir, Moscow, 1990).
  14. W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases. Graduate Studies in Mathematics. Vol. 3. (Amer. Math. Soc., Providence, 1996).
  15. J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Computer J. 7 (4), 308-313 (1965).
  16. D. I. Okunbor and R. D. Skeel, “Canonical Runge-Kutta-Nyström Methods of Orders Five and Six,” J. Comput. Appl. Math. 51 (3), 375-382 (1994).
  17. D. Okunbor and R. D. Skeel, “Explicit Canonical Methods for Hamiltonian Systems,” Math. Comput. 59 (200), 439-455 (1992).
  18. W. Schmidt and A. Jameson, “Euler Solvers as an Analysis Tool for Aircraft Aerodynamics,” in Advances in Computational Transonics (Pineridge Press, Swansea, 1985), pp. 371-404.
  19. V. G. Ganzha and E. V. Vorozhtsov, Computer-Aided Analysis of Difference Schemes for Partial Differential Equations (Wiley, New York, 2012).