Numerical implementation of the Full Waveform Inversion method using the asymptotic solution of the Helmholtz equation


  • Kirill G. Gadylshin
  • Dmitry A. Neklyudov
  • Maxim I. Protasov


full waveform inversion
Helmholtz equation
asymptotic solution
macrovelocity component


In this paper, we consider the numerical implementation of the Full Waveform Inversion method based on the asymptotic solution of the Helmholtz equation. The standard method finds the minimum of the penalty function, which characterizes the mean-square deviation of the modeled data from the observed ones during conducting the field works. Local optimization methods, such as the conjugate gradient method, are usually used to minimize the objective functional. The calculation of the penalty function gradient is the most resource-intensive part of the task. An asymptotic approach to solving an inverse dynamic seismic problem is to replace the expensive finite-difference procedure for calculating the Green’s function of a boundary value problem by the frequency-dependent ray tracing. The Green’s functions are calculated from data on the travel time along the rays, the amplitude and the geometric divergence. A series of numerical experiments for the widespread Marmousi model demonstrates the efficiency of applying of this approach to the reconstruction of macrovelocity structure of complex media for low temporal frequencies. In comparison with the standard finite-difference approach, applied to solving the inverse problem, the speed of calculations of the asymptotic method is an order of magnitude higher upon comparable quality of the solution.





Methods and algorithms of computational mathematics and their applications

Author Biographies

Kirill G. Gadylshin

Dmitry A. Neklyudov

Maxim I. Protasov


  1. R. D. Oldham, “The Constitution of the Interior of the Earth, as Revealed by Earthquakes,” Quart. J. Geol. Soc. London 62, 456-475 (1906).
    doi 10.1144/GSL.JGS.1906.062.01-04.21.
  2. B. Gutenberg, “Über Erdbenwellen viia. Beobachtungen an Registrierungen von Fernbeben in Göttingen und Folgerungen über die Konstitution des Erdkörpers,” Nachrichten von der Könglichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 25 (3), 125-176 (1914).
  3. I. Lehmann, “P’,” Publications du Bureau Central Seismologique International, Série A, Travaux Scientifique 14, 87-115 (1936).
  4. M. Jannane, W. Beydoun, E. Crase, et al., “Wavelengths of Earth Structures that can be Resolved from Seismic Reflection Data,” Geophysics 54 (7), 906-910 (1989).
    doi 10.1190/1.1442719.
  5. J. F Claerbout and S. M. Doherty, “Downward Continuation of Moveout-Corrected Seismograms,” Geophysics 37 (5), 741-768 (1972).
    doi 10.1190/1.1440298.
  6. J. Gazdag, “Wave Equation Migration with the Phase-Shift Method,” Geophysics 43 (7), 1342-1351 (1978).
    doi 10.1190/1.1440899.
  7. R. H. Stolt, “Migration by Fourier Transform,” Geophysics 43 (1), 23-48 (1978).
    doi 10.1190/1.1440826.
  8. E. Baysal, D. D. Kosloff, and J. W. C. Sherwood, “Reverse-Time Migration,” Geophysics 48 (11), 1514-1524 (1983).
    doi 10.1190/1.1441434.
  9. Ö. Yilmaz, Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data (SEG Press, Tulsa, 2001).
  10. B. Biondi and W. W. Symes, “Angle-Domain Common-Image Gathers for Migration Velocity Analysis by Wavefield-Continuation Imaging,” Geophysics 69 (5), 1283-1298 (2004).
    doi 10.1190/1.1801945.
  11. R. Snieder, M. Y. Xie, A. Pica, and A. Tarantola, “Retrieving both the Impedance Contrast and Background Velocity: A Global Strategy for the Seismic Reflection Problem,” Geophysics 54 (8), 991-1000 (1989).
    doi 10.1190/1.1442742.
  12. P. Docherty, R. Silva, S. Singh, et al., “Migration Velocity Analysis Using a Genetic Algorithm,” Geophys. Prospect. 45 (5), 865-878 (2003).
    doi 10.1046/j.1365-2478.1997.640298.x.
  13. P. Lailly, “The Seismic Inverse Problem as a Sequence of before Stack Migrations,” in Proc. Conf. on Inverse Scattering -- Theory and Application, Tulsa, USA, May 16-18, 1983 (SIAM Press, Philadelphia, 1983), pp. 206-220.
  14. A. Tarantola, “Inversion of Seismic Reflection Data in the Acoustic Approximation,” Geophysics 49 (8), 1259-1266 (1984).
    doi 10.1190/1.1441754.
  15. J. F. Claerbout, “Toward a Unified Theory of Reflector Mapping,” Geophysics 36 (3), 467-481 (1971).
    doi 10.1190/1.1440185.
  16. J. F. Claerbout, Fundamentals of Geophysical Data Processing (McGraw–Hill, New York, 1976).
  17. O. Gauthier, J. Virieux, and A. Tarantola, “Two-Dimensional Nonlinear Inversion of Seismic Waveforms: Numerical Results,” Geophysics 51 (7), 1387-1403 (1986).
    doi 10.1190/1.1442188.
  18. P. Kolb, F. Collino, and P. Lailly, “Prestack Inversion of a 1-D Medium,” Proc. IEEE 74 (3), 498-508 (1986).
    doi 10.1109/PROC.1986.13490.
  19. L. T. Ikelle, J. P. Diet, and A. Tarantola, “Linearized Inversion of Multioffset Seismic Reflection Data in the omega-k Domain: Depth-Dependent Reference Medium,” Geophysics 53 (1), 50-64 (1988).
    doi 10.1190/1.1442399.
  20. E. Crase, A. Pica, M. Noble, et al., “Robust Elastic Non-Linear Waveform Inversion: Application to Real Data,” Geophysics 55 (5), 527-538 (1990).
    doi 10.1190/1.1442864.
  21. A. Pica, J. Diet, and A. Tarantola, “Nonlinear Inversion of Seismic Reflection Data in Laterally Invariant Medium,” Geophysics 55 (3), 284-292 (1990).
  22. H. A. Djikpéssé and A. Tarantola, “Multiparameter l_1 Norm Waveform Fitting: Interpretation of Gulf of Mexico Reflection Seismograms,” Geophysics 64 (4), 1023-1035 (1999).
    doi 10.1190/1.1444611.
  23. Y. Choi, D.-J. Min, and C. Shin, “Two-Dimensional Waveform Inversion of Multi-Component Data in Acoustic-Elastic Coupled Media,” Geophys. Prospect. 56 (6), 863-881 (2008).
    doi 10.1111/j.1365-2478.2008.00735.x.
  24. P. W. Cary and C. H. Chapman, “Automatic 1-D Waveform Inversion of Marine Seismic Refraction Data,” Geophys. J. Int. 93 (3), 527-546 (1988).
    doi 10.1111/j.1365-246X.1988.tb03879.x.
  25. Z. Koren, K. Mosegaard, E. Landa, et al., “Monte Carlo Estimation and Resolution Analysis of Seismic Background Velocities,” J. Geophys. Res. Solid Earth 96 (B12). 20289-20299 (1991).
    doi 10.1029/91JB02278.
  26. M. Sambridge and G. Drijkoningen, “Genetic Algorithms in Seismic Waveform Inversion,” Geophys. J. Int. 109 (2), 323-342 (1992).
    doi 10.1111/j.1365-246X.1992.tb00100.x.
  27. S. Jin, R. Madariaga, J. Virieux, and G. Lambaré, “Two-Dimensional Asymptotic Iterative Elastic Inversion,” Geophys. J. Int. 108 (2), 575-588 (1992).
    doi 10.1111/j.1365-246X.1992.tb04637.x.
  28. G. Lambaré, J. Virieux, R. Madariaga, and S. Jin, “Iterative Asymptotic Inversion in the Acoustic Approximation,” Geophysics 57 (9), 1138-1154 (1992).
    doi 10.1190/1.1443328.
  29. G. Beylkin, “Imaging of Discontinuities in the Inverse Scattering Problem by Inversion of a Causal Generalized Radon Transform,” J. Math. Phys. 26 (1), 99-108 (1985).
    doi 10.1063/1.526755.
  30. N. Bleistein, “On the Imaging of Reflectors in the Earth,” Geophysics 52 (7), 931-942 (1987).
    doi 10.1190/1.1442363.
  31. G. Beylkin and R. Burridge, “Linearized Inverse Scattering Problems in Acoustics and Elasticity,” Wave Motion 12 (1), 15-52 (1990).
    doi 10.1016/0165-2125(90)90017-X.
  32. A. Tarantola, Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation (Elsevier, Amsterdam, 1987).
  33. P. Thierry, S. Operto, and G. Lambaré, “Fast 2-D Ray+Born Migration/Inversion in Complex Media,” Geophysics 64 (1), 162-181 (1999).
    doi 10.1190/1.1444513.
  34. S. Operto, S. Xu, and G. Lambaré, “Can We Image Quantitatively Complex Models with Rays?’’ Geophysics 65 (4), 1223-1238 (2000).
    doi 10.1190/1.1444814.
  35. K. J. Marfurt, “Accuracy of Finite–Difference and Finite–Elements Modeling of the Scalar and Elastic Wave Equation,” Geophysics 49 (5), 533-549 (1984).
    doi 10.1190/1.1441689.
  36. D.-J. Min and C. Shin, “Refraction Tomography Using a Waveform–Inversion Back–Propagation Technique,” Geophysics 71 (3), R21-R30 (2006).
    doi 10.1190/1.2194522.
  37. J. Virieux, “P–SV Wave Propagation in Heterogeneous Media: Velocity-Stress Finite-Difference Method,” Geophysics 51 (4), 889-901 (1986).
    doi 10.1190/1.1442147.
  38. R. Brossier, J. Virieux, and S. Operto, “Parsimonious Finite–Volume Frequency–Domain Method for 2-D P–SV-Wave Modelling,” Geophys. J. Int. 175 (2), 541-559 (2008).
    doi 10.1111/j.1365-246X.2008.03839.x.
  39. P. Danecek and G. Seriani, “An Efficient Parallel Chebyshev Pseudo-Spectral Method for Large Scale 3D Seismic Forward Modelling,” in Proc. 70th EAGE Conference and Exhibition, Rome, Italy, June 9-June 12, 2008 (European Assoc. Geosci. Eng., Amsterdam, 2008).
    doi 10.3997/2214-4609.20147862.
  40. B. L. N. Kennett, Seismic Wave Propagation in Stratified Media (Cambridge Univer. Press, Cambridge, 1983).
  41. C. Chapman, “Ray Theory and Its Extension: Wkbj and Maslov Seismograms,” J. Geophys. 58 (1), 27-43 (1985). . Cited January 25, 2022.
  42. K. D. Klem–Musatov and A. M. Aizenberg, “Seismic Modelling by Methods of the Theory of Edge Waves,” J. Geophys. 57 (1), 90-105 (1985). . Cited January 25, 2022.
  43. R. G. Pratt, “Seismic Waveform Inversion in the Frequency Domain, Part 1: Theory and Verification in a Physical Scale Model,” Geophysics 64 (3), 888-901 (1999).
    doi 10.1190/1.1444597.
  44. A. J. Brenders and R. G. Pratt, “Efficient Waveform Tomography for Lithospheric Imaging: Implications for Realistic Two-Dimensional Acquisition Geometries and Low Frequency Data,” Geophys. J. Int. 168 (1), 152-170 (2007).
    doi 10.1111/j.1365-246X.2006.03096.x.
  45. L. Sirgue, “The Importance of Low Frequency and Large Offset in Waveform Inversion,” in Proc. 68th EAGE Conference and Exhibition, Vienna, Austria, June 12-15, 2006 (European Assoc. Geosci. Eng., Amsterdam, 2006).
    doi 10.3997/2214-4609.201402146.
  46. K. G. Gadylshin and V. A. Tcheverda, “Nonlinear Least-Squares Full Waveform Inversion: SVD Analysis,” Vychisl. Metody Programm. 15 (3), 499-513 (2014).
  47. K. G. Gadylshin and V. A. Cheverda, “Reconstruction of a Depth Velocity Model by Full Waveform Inversion,” Dokl. Akad. Nauk 476 (6), 693-697 (2017) [Dokl. Earth. Sci. 476 (2), 1233-1237 (2017)].
    doi 10.1134/S1028334X17100221.
  48. K. G. Gadylshin and M. I. Protasov, “Calculation of Exact Frequency-Dependent Rays When the Solution of the Helmholtz Equation Is Known,” Vychisl. Metody Programm. 16 (4), 586-594 (2015).
    doi 10.26089/NumMet.v16r455.
  49. K. G. Gadylshin and V. A. Tcheverda, “Solving an Inverse Dynamic Seismic Problem by Multicomponent Elastic Full Waveform Inversion,” Dokl. Akad. Nauk 482 (6), 708-712 (2018) [Dokl. Earth. Sci. 482 (2), 1365-1369 (2018)].
    doi 10.1134/S1028334X18100227.
  50. L. Métivier, R. Brossier, and J. Virieux, “Combining Asymptotic Linearized Inversion and Full Waveform Inversion,” Geophys. J. Int. 201 (3), 1682-1703 (2015).
    doi 10.1093/gji/ggv106.
  51. A. Ribodetti, S. Gaffet, S. Operto, et al., “Asymptotic Waveform Inversion for Unbiased Velocity and Attenuation Measurements: Numerical Tests and Application for Vesuvius Lava Sample Analysis,” Geophys. J. Int. 158 (1), 353-371 (2004).
    doi 10.1111/j.1365-246X.2004.02245.x.
  52. J. Chen, D. S. Cheng, R. Jie, and X. Zhu, “A Fourth-Order 9-Point Finite Difference Method for the Helmholtz Equation,” J. Phys. Conf. Ser. 1453 (1) (2020).
    doi 10.1088/1742-6596/1453/1/012044.
  53. J.-P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114 (2), 185-200 (1994).
    doi 10.1006/jcph.1994.1159.
  54. A. Lomax, “The Wavelength-Smoothing Method for Approximating Broad-Band Wave Propagation through Complicated Velocity Structures,” Geophys. J. Int. 117 (2), 313-334 (1994).
    doi 10.1111/j.1365-246X.1994.tb03935.x.
  55. V. Cerveny, I. A. Molotkov, and I. Psencik, Ray Theory in Seismology (Charles Univ. Press, Prague, 1977).