The use of ontologies for solving scientific problems (by example of geophysics)


  • Boris M. Glinskiy
  • Gennadiy F. Zhernyak
  • Galina B. Zagorulko
  • Pavel A. Titov


intelligent support


The paper covers an intelligent support system that allows to describe and construct solutions to various scientific problems. In this study, in particular, we consider geophysical problems. This system is being developed at the Institute of Computational Mathematics and Mathematical Geophysics of the Russian Academy of Sciences (ICMMG SB RAS) and Institute of Informatics System of the Russian Academy of Sciences (IIS SB RAS). The system contains a knowledge base, the core of which is a set of several interconnected ontologies such as the ontology of supercomputer architectures, the ontology of algorithms and methods. Ontology can be viewed as a set of concepts and how those concepts are linked. As the result, the authors present an ontological description of two geophysical problems via the means of the intelligent support system: 1) the seismic wavefield simulation and 2) the reconstruction of a seismic image through pre-stack time or depth migration. For a better visual understanding of the system described and the results obtained, the paper also contains several schematic diagrams and images.






Methods and algorithms of computational mathematics and their applications

Author Biographies

Boris M. Glinskiy

Gennadiy F. Zhernyak

Galina B. Zagorulko

Pavel A. Titov


  1. M. Compton, P. Barnaghi, L. Bermudez, et al., “The SSN Ontology of the W3C Semantic Sensor Network Incubator Group,” J. Web Semant. 17, 25-32 (2012). doi{10.1016/j.websem.2012.05.003}.
  2. C. M. Keet, A. Ławrynowicz, C. d’Amato, et al., “The Data Mining OPtimization Ontology,” J. Web Semant. 32, 43-53 (2015). doi{10.1016/j.websem.2015.01.001}.
  3. V. Cvjetkovic, “Web Physics Ontology: Online Interactive Symbolic Computation in Physics,” in 4th Experiment and International Conf. (’17), Faro, Portugal, June 6-8, 2017 (IEEE Press, New York, 2017), pp. 52-57. doi{10.1109/EXPAT.2017.7984405}.
  4. L. M. Sarro and R. Mart’{i}nez, “First Steps towards an Ontology for Astrophysics,”
  5. B. Glinskiy, Yu. Zagorulko, G. Zagorulko, et al., “The Creation of Intelligent Support Methods for Solving Mathematical Physics Problems on Supercomputers,” in Communications in Computer and Information Science (Springer, Cham, 2019), Vol. 1129, pp. 427-438. doi{10.1007/978-3-030-36592-9_35}.
  6. A. Sapetina, B. Glinskiy, and G. Zagorulko, “Content of Ontology for Solving Compute-Intensive Problems of the Cosmic Plasma Hydrodynamics,” J. Phys.: Conf. Ser. 1640 (1) (2020). doi{10.1088/1742-6596/1640/1/012019}.
  7. D. L. Cook, M. L. Neal, F. L. Bookstein, and J. H. Gennari, “Ontology of Physics for Biology: Representing Physical Dependencies as a Basis for Biological Processes,” J. Biomed. Semant. 4 (2013). doi{10.1186/2041-1480-4-41}.
  8. D. D. Sokoloff and M. V. Remizowa, “The Use of Plant Ontologies in Comparative and Evolutionary Studies Should be Flexible,” Am. J. Bot. 108 (6), 909-911 (2021). doi{10.1002/ajb2.1692}.
  9. X. Ma, Ontology Spectrum for Geological Data Interoperability , PhD Thesis (University of Twente, Enschede, 2011).
  10. A. Mantovani, F. Piana, and V. Lombardo, “Ontology-Driven Representation of Knowledge for Geological Maps,” Comput. Geosci. 139 (2020). doi{10.1016/j.cageo.2020.104446}.
  11. C. Wang, X. Ma, and J. Chen, “Ontology-Driven Data Integration and Visualization for Exploring Regional Geologic Time and Paleontological Information,” Comput. Geosci. 115, 12-19 (2018). doi{10.1016/j.cageo.2018.03.004}.
  12. L. F. Garcia, M. Abel, M. Perrin, and R. dos Santos Alvarenga, “The GeoCore Ontology: A Core Ontology for General Use in Geology,” Comput. Geosci. 135 (2020). doi{10.1016/j.cageo.2019.104387}.
  13. U. Visser, H. Stuckenschmidt, G. Schuster, T. Vögele, “Ontologies for Geographic Information Processing,” Comput. Geosci. 28 (1), 103-117 (2002). doi{10.1016/S0098-3004(01)00019-X}.
  14. F. Reitsma, J. Laxton, S. Ballard, et al., “Semantics, Ontologies and EScience for the Geosciences,” Comput. Geosci. 35 (4), 706-709 (2009). doi{10.1016/j.cageo.2008.03.014}.
  15. Yu. A. Zagorulko, G. B. Zagorulko, and O. I. Borovikova, “Technology for Building Subject-Based Intelligent Scientific Internet Resources Based on Ontology,” Soft. Eng. 7 (2), 51-60 (2016). doi{10.17587/prin.7.51-60}.
  16. B. Glinskiy, A. Sapetina, V. Martynov, et al., “The Hybrid-Cluster Multilevel Approach to Solving the Elastic Wave Propagation Problem,” in Communications in Computer and Information Science (Springer, Cham, 2017), Vol. 753, pp. 261-274. doi{10.1007/978-3-319-67035-5_19}.
  17. P. Titov, D. Weins, and I. Chernykh, “Application of an Integral Approach to the Parallel Algorithm of 3D Wave Fields Simulation in Generalized Coordinates,” in Proc. Int. Conf. on Russian Supercomputing Days, Moscow, Russia, September 23-24, 2019 (MAKS Press, Moscow, 2019), pp. 14-25.
  18. G. Antoniou and F. van Harmelen, “Web Ontology Language: OWL,” in Handbook on Ontologies (Springer, Berlin, 2004), pp. 67-92. doi{10.1007/978-3-540-24750-0_4}.
  19. I. Horrocks, P. F. Patel-Schneider, H. Boley, et al., “SWRL: A Semantic Web Rule Language Combining OWL and RuleML,”}. Cited December 14, 2021.
  20. N. Belaid, Y. Ait-Ameur, and J.-F. Rainaud, 2009., “SWAPT: Semantic Workflow Architecture for Petroleum Technology,”}.Cited December 14, 2021.
  21. V. Parekh, J. Gwo, and T. Finin, “Ontology Based Semantic Metadata for GeoScience Data,” in Proc. Int. Conf. on Information and Knowledge Engineering, IKE’04, Las Vegas, USA, June 21-24, 2004 (CSREA Press, Las Vegas, 2004), pp. 485-490.
  22. P. Titov, “The Simulation of 3D Wave Fields in Complex Topography Media,” in Communications in Computer and Information Science (Springer, Cham, 2019), Vol. 1129, pp. 451-462. doi{10.1007/978-3-030-36592-9_37}.
  23. V. Liseykin, Difference Meshes. Theory and Applications (Ross. Akad. Nauk, Novosibirsk, 2014) [in Russian].
  24. R. E. Sheriff and L. P. Geldart, Exploration Seismology (Cambridge Univ. Press, Cambridge, 1995). doi{10.1017/CBO9781139168359}.