Finite element modeling of multiphase flows with their balancing while setting the working pressure on wells during oil production

Authors

DOI:

https://doi.org/10.26089/NumMet.v23r105

Keywords:

multiphase flow in porous media, numerical 3D modeling of hydrocarbon reservoirs, finite element method, local flows conservation

Abstract

Approaches to modeling multiphase flow in oil reservoir while setting the working pressure for the perforation zones of active wells are considered. The proposed numerical method is based on an implicit calculation of the pressure and an explicit recalculation of the phase saturations in the mesh cells at each time step. Description of the mathematical model, general computational scheme, finite element approximation of the pressure field are presented. To ensure conservation of the mixture flows, special method of balancing is used, and its algorithm is presented. The studies were carried out on the problem of the comparative project SPE-10, for which the calculation of flows for the perforated zones of wells with a set pressure was carried out using two approaches.

Author Biographies

Anastasia S. Ovchinnikova

Ilya I. Patrushev

Alexander M. Grif

Marina G. Persova

Novosibirsk State Technical University
• Professor, Head of Laboratory

Yuri G. Soloveichik

Novosibirsk State Technical University
• Professor, Head of Department

References

  1. K. S. Schmid, S. Geiger, and K. S. Sorbie, “Higher Order FE-FV Method on Unstructured Grids for Transport and Two-Phase Flow with Variable Viscosity in Heterogeneous Porous Media,” J. Comput. Phys. 241, 416-444 (2013).
    doi 10.1016/j.jcp.2012.12.017.
  2. R.-han Zhang, L.-hui Zhang, J.-xin Luo, et al., “Numerical Simulation of Water Flooding in Natural Fractured Reservoirs Based on Control Volume Finite Element Method,” J. Pet. Sci. Eng. 146, 1211-1225 (2016).
    doi 10.1016/j.petrol.2016.08.024.
  3. H. M. Nick and S. K. Matthäi, “Comparison of Three FE-FV Numerical Schemes for Single- and Two-Phase Flow Simulation of Fractured Porous Media,” Transp. Porous Media 90 (2), 421-444 (2011).
    doi 10.1007/s11242-011-9793-y.
  4. A. S. Abushaikha, M. J. Blunt, O. R. Gosselin, et al., “Interface Control Volume Finite Element Method for Modelling Multi-Phase Fluid Flow in Highly Heterogeneous and Fractured Reservoirs,” J. Comput. Phys. 298, 41-61 (2015).
    doi 10.1016/j.jcp.2015.05.024.
  5. J. Moortgat and A. Firoozabadi, “Higher-Order Compositional Modeling of Three-Phase Flow in 3D Fractured Porous Media Based on Cross-Flow Equilibrium,” J. Comput. Phys. 250, 425-445 (2013).
    doi 10.1016/j.jcp.2013.05.009.
  6. J. Moortgat, S. Sun, and A. Firoozabadi, “Compositional Modeling of Three-Phase Flow with Gravity Using Higher-Order Finite Element Methods,” Water Resour. Res. 47 (5), Article Number W05511 (2011).
    doi 10.1029/2010WR009801.
  7. M. D. Jackson, J. L. M. A. Gomes, P. Mostaghimi, et al., “Reservoir Modeling for Flow Simulation Using Surfaces, Adaptive Unstructured Meshes and Control-Volume-Finite-Element Methods,” in Proc. Soc. Pet. Eng. Reservoir Simulation Symposium, The Woodlands, USA, February 18-20, 2013 (Curan Associates, Red Hook, 2013), pp. 774-792.
    doi 10.2118/163633-MS.
  8. A. S. Abd and A. Abushaikha, “Velocity Dependent Up-winding Scheme for Node Control Volume Finite Element Method for Fluid Flow in Porous Media,” Sci. Rep. 10 (1), Article Number 4427 (2020).
    doi 10.1038/s41598-020-61324-4.
  9. M. A. Amooie and J. Moortgat, “Higher-Order Black-Oil and Compositional Modeling of Multiphase Compressible Flow in Porous Media,” Int. J. Multiph. Flow 105, 45-59 (2018).
    doi 10.1016/j.ijmultiphaseflow.2018.03.016.
  10. L. H. Odsaeter, M. F. Wheeler, T. Kvamsdal, and M. G. Larson, “Postprocessing of Non-Conservative Flux for Compatibility with Transport in Heterogeneous Media,” Comput. Methods Appl. Mech. Eng. 315, 799-830 (2017).
    doi 10.1016/J.CMA.2016.11.018.
  11. M. G. Larson and A. J. Niklasson, “A Conservative Flux for the Continuous Galerkin Method Based on Discontinuous Enrichment,” Calcolo 41 (2), 65-76 (2004).
    doi 10.1007/BF02637255.
  12. S. Sun and M. F. Wheeler, “Projections of Velocity Data for the Compatibility with Transport,” Comput. Methods Appl. Mech. Eng. 195 (7-8), 653-673 (2006).
    doi 10.1016/j.cma.2005.02.011.
  13. M. G. Persova, Yu. G. Soloveichik, A. M. Grif, and I. I. Patrushev, “Flow Balancing in FEM Modelling of Multi-Phase Flow in Porous Media,” in Proc. 14th Int. Scientific-Technical Conf. on Actual Problems of Electronic Instrument Engineering, Novosibirsk, Russia, October 2-6, 2018 (IEEE Press, New York, 2018), pp. 205-211.
    doi 10.1109/APEIE.2018.8545457.
  14. M. G. Persova, Yu. G. Soloveichik, D. V. Vagin, et al., “The Design of High-Viscosity Oil Reservoir Model Based on the Inverse Problem Solution,” J. Pet. Sci. Eng. 199, Article Number 108245 (2021).
    doi 10.1016/j.petrol.2020.108245.
  15. M. G. Persova, Y. G. Soloveichik, D. V. Vagin, et al., “Finite Element Solution to 3-D Airborne Time-Domain Electromagnetic Problems in Complex Geological Media Using Non-Conforming Hexahedral Meshes,” J. Appl. Geophys. 172, Article Number 103911 (2020).
    doi 10.1016/j.jappgeo.2019.103911.
  16. A. S. Ovchinnikova and M. G. Persova, “Boundary Conditions on Perforation Zones in the Calculation of the Pressure Field for the Problems of Multiphase Flow,” in Proc. Conf. on Science, Technologies, and Innovations, Novosibirsk, Russia, November 30—December 4, 2020 (Novosibirsk Gos. Tekhn. Univ., Novosibirsk, 2020), pp. 139-143.
  17. Yu. G. Soloveichik, M. E. Roiak, and M. G. Persova, The Finite Element Method for the Solution of Scalar and Vector Problems (Novosibirsk Gos. Tekhn. Univ., Novosibirsk, 2007) [in Russian].
  18. O. Schenk and K. Gärtner, “Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO,” Future Gener. Comput. Syst. 20 (3), 475-487 (2004).
    doi 10.1016/j.future.2003.07.011.
  19. Yu. G. Soloveichik, M. G. Persova, I. I. Patrushev, and S. A. Glushkov, “Numerical Modeling of Multi-Phase Flow in Porous Media for Petroleum Technology Using Polymers Flood,” in Proc. 14th Int. Scientific-Technical Conf. on Actual Problems of Electronic Instrument Engineering, Novosibirsk, Russia, October 2-6, 2018 (IEEE Press, New York, 2018), pp. 301-306.
    doi 10.1109/APEIE.2018.8545132.
  20. Yu. G. Soloveichik, M. G. Persova, A. M. Grif, et al., “A Method of FE Modeling Multiphase Compressible Flow in Hydrocarbon Reservoirs,” Comput. Methods Appl. Mech. Eng. 390, Article Number 114468 (2022).
    doi 10.1016/J.CMA.2021.114468.
  21. M. A. Christie and M. J. Blunt, “Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques,” SPE Res. Eval. Eng. 4 (04), 308-317 (2001).
    doi 10.2118/72469-PA.

Published

12-03-2022

How to Cite

Овчинникова А. С., Патрушев И. И., Гриф А. М., Персова М. Г., Соловейчик Ю. Г. Finite Element Modeling of Multiphase Flows With Their Balancing While Setting the Working Pressure on Wells During Oil Production // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2022. 23. 60-74. doi 10.26089/NumMet.v23r105

Issue

Section

Methods and algorithms of computational mathematics and their applications