Numerical simulation of hypersonic flow around semi-sphere with non-equilibrium physical and chemical processes in high-temperature air




computational fluid dynamics, hypersonic flow, sphere, aerodynamics, shock wave, high-temperature effects


High-temperature effects have a significant impact on the characteristics of aircraft moving at hypersonic speed. Due to the complexity of setting up a physical experiment, mathematical modelling plays an important role in finding the characteristics of hypersonic aircraft. The construction and implementation of a mathematical model for the numerical simulation of a hypersonic flow around a semi-sphere is discussed, taking into account non-equilibrium physical and chemical processes in high-temperature air. The mathematical model includes the equations of gas dynamics, the equations of the turbulence model and the equations of chemical kinetics. Numerical simulation of supersonic and hypersonic air flow around a hemi-sphere is carried out, taking into account high-temperature effects. A critical review of various models that are used to find the shock stand-off is given. The results of calculations obtained using the developed numerical method are compared with the data of a physical experiment and the computational data available in the literature in a wide range of Mach numbers. The developed model and computational results are important for simulation of flows around bodies of complex configuration and designing high-speed aircraft.

Author Biographies

Konstantin N. Volkov

Vladislav A. Gimadiev

Yuri V. Dobrov

Anton G. Karpenko


  1. D. G. Fletcher, “Fundamentals of Hypersonic Flow -- Aerothermodynamics,” in Critical Technologies for Hypersonic Vehicle Development (Von Karman Inst. for Fluid Dynamics, Rhode-St-Genese, 2005), pp. 3-1-3-47.
  2. J. D. Anderson, Hypersonic and High Temperature Gas Dynamics (AIAA Press, Reston, 2006).
  3. S. T. Surzhikov, Numerical Study of Aerothermodynamics of Hypersonic Flow over Blunt Bodies by the Example of Experimental Data Analysis (Inst. for Problems in Mechanics, Moscow, 2011) [in Russian].
  4. V. A. Bashkin and I. V. Egorov, Numerical Simulation of Viscous Perfect Gas Dynamics (Fizmatlit, Moscow, 2012; Begell House, New York, 2016).
  5. M. Holt and G. H. Hoffman, Calculation of Hypersonic Flow Past Sphere and Ellipsoids , Report No. 61-209-1903 (American Rocket Society, New York, 1961).
  6. R. N. Cox and L. F. Crabtree, Elements of Hypersonic Aerodynamics (Academic Press, New York, 1965).
  7. A. P. Krasil’schikov and L. P. Gur’yashkin, Experimental Studies of Rotating Bodies in Hypersonic Flows (Fizmatlit, Moscow, 2007) [in Russian].
  8. N. A. Kharchenko and M. A. Kotov, “Analysis of the High Speed Gas Flow over a Sphere in the Range of Mach Numbers 2-12,” J. Phys.: Conf. Ser. 1009 (2018).
    doi 10.1088/1742-6596/1009/1/012007.
  9. H. Olivier, “A Theoretical Model for the Shock Stand-off Distance in Frozen and Equilibrium Flows,” J. Fluid Mech. 413 (01), 345-353 (2000).
    doi 10.1017/S0022112000008703.
  10. Y. M. Hu, H. M. Huang, and J. Guo, “Shock Wave Standoff Distance of Near Space Hypersonic Vehicles,” Sci. China. Technol. Sci. 60 (8), 1123-1131 (2017).
    doi 10.1007/s11431-016-9055-5.
  11. W. L. Hankey, Re-Entry Aerodynamics (AIAA Press, Washington, 1988). . Cited August 28, 2022.
  12. S. T. Surzhikov, “Numerical Simulation of Heat Radiation Generated by Entering Space Vehicle,” AIAA Paper 2004-2379 (2004).
    doi 10.2514/6.2004-2379.
  13. J. J. Quirk, “A Contribution to the Great Riemann Solver Debate,” Int. J. Numer. Methods Fluids 18 (6), 555-574 (1994).
    doi 10.1002/fld.1650180603.
  14. R. K. Lobb, “Experimental Measurement of Shock Detachment Distance on Spheres Fired in Air at Hypervelocities,” in High Temperature Aspects of Hypersonic Flow (Pergamon Press, Oxford, 1964), pp. 519-527.
    doi 10.1016/B978-1-4831-9828-6.50031-X.
  15. T. J. McIntyre, A. I. Bishop, H. Rubinsztein-Dunlop, and P. Gnoffo, “Comparison of Experimental and Numerical Studies of Ionizing Flow over a Cylinder,” AIAA J. 41 (11), 2157-2161 (2003).
    doi 10.2514/2.6833.
  16. H. G. Hornung, J. M. Schramm, and K. Hannemann, “Hypersonic Flow over Spherically Blunted Cone Capsules for Atmospheric Entry. Part 1. The Sharp Cone and the Sphere,” J. Fluid Mech. 871, 1097-1116 (2019).
    doi 10.1017/jfm.2019.342.
  17. G. F. Widhoppe and K. J. Victoria, “On the Solution of the Unsteady Navier-Stokes Equations Including Multicomponent Finite Rate Chemistry,” Comput. Fluids 1 (2), 159-184 (1973).
    doi 10.1016/0045-7930(73)90016-9.
  18. G. F. Widhopf and J. C. T. Wang, “A TVD Finite-Volume Technique for Nonequilibrium Chemically Reacting Flows,” AIAA Paper 88-2711 (1988).
    doi 10.2514/6.1988-2711.
  19. M. E. Olsen, Y. Liu, M. Vinokur, and T. Olsen, “Implementation of Premixed Equilibrium Chemistry Capability in OVERFLOW,” AIAA Paper 2004-1273 (2004).
    doi 10.2514/6.2004-1273.
  20. S. Chen, Y. Hu, and Q. Sun, “Study of the Coupling between Real Gas Effects and Rarefied Effects on Hypersonic Aerodynamics,” AIP Conf. Proc. 1501 (1), 1515-1521 (2012).
    doi 10.1063/1.4769718.
  21. K. N. Volkov, V. N. Emelyanov, and A. G. Karpenko, “Numerical Simulation of Gas Dynamic and Physical-Chemical Processes in Hypersonic Flows past Bodies,” Vychisl. Metody Program. 18 (4), 387-405 (2017).
    doi 10.26089/NumMet.v18r433.
  22. V. Emelyanov, A. Karpenko, and K. Volkov, “Simulation of Hypersonic Flows with Equilibrium Chemical Reactions on Graphics Processor Units,” Acta Astronaut. 163 (Part A), 259-271 (2019).
    doi 10.1016/j.actaastro.2019.01.010.
  23. A. N. Kraiko and V. E. Makarov, “Explicit Analytic Formulas Defining the Equilibrium Composition and Thermodynamic Functions of Air for Temperatures from 200 to 20000 K,” Teplofiz. Vys. Temp. 34 (2), 208-219 (1996) [High Temp. 34 (2), 202-213 (1996)].
  24. M. M. Golomazov, “Investigation Chemical Processes for Hypersonic Flow of Carbon Dioxide around Blunt Bodies,” Physical-Chemical Kinetics in Gas Dynamics. No. 2012-10-18-001. (2012). Cited August 28, 2022.
  25. Yu. D. Shevelev, N. G. Syzranova, E. V. Kustova, and E. A. Nagnibeda, “Numerical Simulation of Hypersonic Flows around Space Vehicles Descending in the Martian Atmosphere,” Mat. Model. 22 (9), 23-50 (2010) [Math. Models Comput. Simul. 3 (2), 205-224 (2011)].
    doi 10.1134/S2070048211020104.
  26. T. GallouHet, J.-M. Hérard, and N. Seguin, “Some Recent Finite Volume Schemes to Compute Euler Equations Using Real Gas EOS,” Int. J. Numer. Methods Fluids 39 (12), 1073-1138 (2002).
    doi 10.1002/fld.346.
  27. C. J. Roy and F. G. Blottner, “Review and Assessment of Turbulence Models for Hypersonic Flows,” Prog. Aerosp. Sci. 42 (7-8), 469-530 (2006).
    doi 10.1016/j.paerosci.2006.12.002.
  28. Yu. Dobrov, V. Gimadiev, A. Karpenko, and K. Volkov, “Numerical Simulation of Hypersonic Flow with Non-equilibrium Chemical Reactions around Sphere,” Acta Astronaut. 194, 468-479 (2022).
    doi 10.1016/j.actaastro.2021.10.008.
  29. C. Park, “Review of Chemical-Kinetic Problems of Future NASA Missions. Part I. Earth Entries,” J. Thermophys. Heat Transf. 7 (3), 385-398 (1993).
    doi 10.2514/3.431.
  30. R. N. Gupta, J. M. Yos, and R. A. Thompson, A Review of Reaction Rates and Thermodynamic Transport Properties for an 11-Species Air Model for Chemical and Thermal Non-equilibrium Calculations to 30, 000 K NASA Report No. TM101528 (1989). . Cited August 28, 2022.
  31. C. Park, R. L. Jaffe, and H. Partridge, “Chemical-Kinetic Parameters of Hyperbolic Earth Entry,” J. Thermophys. Heat Transf. 15 (1), 76-90 (2001).
    doi 10.2514/2.6582.
  32. A. M. Starik, N. S. Titova, and I. V. Arsentiev, “Comprehensive Analysis of the Effect of Atomic and Molecular Metastable State Excitation on Air Plasma Composition behind Strong Shock Waves,” Plasma Sources Sci. Technol. 19 (1) (2009).
    doi 10.1088/0963-0252/19/1/015007.
  33. J. R. Edwards and M.-S. Liou, “Low-Diffusion Flux-Splitting Methods for Flows at all Speeds,” AIAA J. 36 (9), 1610-1617 (1998).
    doi 10.2514/2.587.
  34. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin, 2009).
    doi 10.1007/b79761.
  35. F. Qu, J. Chen, D. Sun, et al., “A Grid Strategy for Predicting the Space Plane’s Hypersonic Aerodynamic Heating Loads,” Aerosp. Sci. Technol. 86, 659-670 (2019).
    doi 10.1016/j.ast.2019.01.049.
  36. V. M. Kotov, E. N. Lychkin, A. G. Reshetin, and A. N. Schelkonogov, “An Approximate Method of Aerodynamic Calculation of Complex Shape Bodies in a Transition Region,” in Rarefied Gas Dynamics (Plenum Press, New York, 1985), Vol. 1, pp. 487-494.
  37. G. F. Widhopf and R. Hall, “Transitional and Turbulent Heat-Transfer Measurements on Yawed Blunt Conical Nosetip,” AIAA J. 10 (10), 1318-1325 (1972).
    doi 10.2514/3.50376.
  38. J. A. Fay and F. R. Riddell, “Theory of Stagnation Point Heat Transfer in Dissociated Air,” J. Aeronaut. Sci. 25 (2), 73-85 (1958).
    doi 10.2514/8.7517.
  39. N. Belouaggadia, H. Olivier, and R. Brun, “Numerical and Theoretical Study of the Shock Stand-off Distance in Non-equilibrium Flows,” J. Fluid Mech. 607, 167-197 (2008).
    doi 10.1017/S0022112008001973.
  40. C.-Y. Wen and H. G. Hornung, “Non-equilibrium Dissociating Flow over Spheres,” J. Fluid Mech. 299, 389-405 (1995).
    doi 10.1017/S0022112095003545.
  41. J. Martel, B. Jolly, and W. Lawrence, “Shock Standoff and Shape Predictions with Validation for Flat Face Cylinder,” AIAA Paper 2015-0523 (2015).
    doi 10.2514/6.2015-0523.
  42. S. Askari, “An Analytical Approach for Stand-off Distance of Detached Shock Waves,” Aerosp. Sci. Technol. 28 (1), 384-390 (2013).
    doi 10.1016/j.ast.2012.12.004.
  43. Y. Hu, H. Huang, and Z. Zhang, “New Formulas for Standoff Distance in Front of Spacecraft in Hypersonic Flow,” J. Spacecr. Rockets 53 (5), 993-997 (2016).
    doi 10.2514/1.A33642.



How to Cite

Волков К. Н., Гимадиев В. А., Добров Ю. В., Карпенко А. Г. Numerical Simulation of Hypersonic Flow Around Semi-Sphere With Non-Equilibrium Physical and Chemical Processes in High-Temperature Air // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2022. 23. 248-274. doi 10.26089/NumMet.v23r316



Methods and algorithms of computational mathematics and their applications