Algorithm of numerical modelling of the surface diffusion flow for periodic triangulated surfaces


  • Yury D. Efremenko


numerical methods
surface diffusion
topology changes
retriangulation algorithms,
mean curvature


The algorithm of numerical modelling of the surface diffusion flow for periodic triangulated initial surface is proposed in the paper. To process the singularities that appear during computations the algorithms of retriangulation were developed. The cases of singularity inside of the cube containing the surface, on it’s face, edge and corner were considered. The work of the algorithm is illustrated with several examples.





Methods and algorithms of computational mathematics and their applications

Author Biography

Yury D. Efremenko

Novosibirsk State University
• Research Engineer


  1. W. W. Mullins, “Theory of Thermal Grooving,” J. Appl. Phys. 28 (3), 333-339 (1957).
    doi 10.1063/1.1722742.
  2. J. W. Cahn, C. M. Elliott, and A. Novick-Cohen, “The Cahn-Hilliard Equation with a Concentration Dependent Mobility: Motion by Minus the Laplacian of the Mean Curvature,” Eur. J. Appl. Math. 7 (3), 287-301 (1996).
    doi 10.1017/S0956792500002369.
  3. Ya. V. Bazaikin, V. S. Derevschikov, E. G. Malkovich, et al., “Evolution of Sorptive and Textural Properties of CaO-Based Sorbents during Repetitive Sorption/Regeneration Cycles: Part II. Modeling of Sorbent Sintering during Initial Cycles,” Chem. Eng. Sci. 199, 156-163 (2019).
    doi 10.1016/J.CES.2018.12.065.
  4. J. Escher, U. F. Mayer, and G. Simonett, “The Surface Diffusion Flow for Immersed Hypersurfaces,” SIAM J. Math. Anal. 29 (6), 1419-1433 (1998).
    doi 10.1137/S0036141097320675.
  5. U. F. Mayer and G. Simonett, “Self-Intersections for the Surface Diffusion and the Volume Preserving Mean Curvature Flow,” Differ. Integral Equ. 13 (7-9), 1189-1199 (2000). . Cited May 21, 2022.
  6. Yu. D. Efremenko, “On Semi-Implicit Numerical Method for Surface Diffusion Equation for Triangulated Surfaces,” Sib. Electron. Math. Rep. 18 (2), 1367-1389 (2021).
    doi 10.33048/semi.2021.18.104.
  7. P. Smereka, “Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion,” J. Sci. Comput. 19, 439-456 (2003).
    doi 10.1023/A: 1025324613450.
  8. U. F. Mayer, “Numerical Solutions for the Surface Diffusion Flow in Three Space Dimensions,” Comput. Appl. Math. 20 (3), 361-379 (2001).
  9. Library CGAL.The Computational Geometry Algorithms Library (CGAL). Cited May 21, 2022.
  10. Linear Algebra Library (Eigen). . Cited May 21, 2022.
  11. D Surface Mesh Generation Package. . Cited May 21, 2022.
  12. M. Cenanovic, P. Hansbo, and M. G. Larson, “Finite Element Procedures for Computing Normals and Mean Curvature on Triangulated Surfaces and Their Use for Mesh Refinement,” (2017). . Cited May 21, 2022.
  13. K. Watanabe and A. G. Belyaev, “Detection of Salient Curvature Features on Polygonal Surfaces,” Comput. Graph. Forum 20 (3), 385-392 (2001).
    doi 10.1111/1467-8659.00531.
  14. E. Magid, O. Soldea, and E. Rivlin, “A Comparison of Gaussian and Mean Curvature Estimation Methods on Triangular Meshes of Range Image Data,” Comput. Vis. Image Underst. 107 (3), 139-159 (2007).
    doi 10.1016/j.cviu.2006.09.007.
  15. U. Pinkall and K. Polthier, “Computing Discrete Minimal Surfaces and Their Conjugates,” Exper. Math. 2 (1), 15-36 (1993).
    doi 10.1080/10586458.1993.10504266.
  16. M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, “Discrete Differential-Geometry Operators for Triangulated 2-Manifolds,” in Visualization and Mathematics III (Springer, Heidelberg, 2003), pp. 35-57.
    doi 10.1007/978-3-662-05105-4_2.
  17. Polygon Mesh Processing Package. . Cited May 21, 2022.
  18. W. Jung, H. Shin, and B. K. Choi, “Self-Intersection Removal in Triangular Mesh Offsetting,” Comput.-Aided Des. Appl. 1 (1-4), 477-484 (2004).
    doi 10.1080/16864360.2004.10738290.
  19. Scale-Space Surface Reconstruction Package. . Cited May 21, 2022.
  20. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, New York, 2013).
  21. B. D. Lubachevsky and F. H. Stillinger, “Geometric Properties of Random Disk Packings,” J. Stat. Phys. 60 (5-6), 561-583 (1990).
    doi 10.1007/BF01025983.