DOI: https://doi.org/10.26089/NumMet.v23r315

The Kantorovich projection method in the generalized quadratic spectrum approximation

Authors

  • Somia Kamouche
  • Hamza Guebbai
  • Mourad Ghiat
  • Muhammet Kurulay

Keywords:

Spectral pollution
Spectral approximation
Kantorovich Projection
Eigenvalue

Abstract

The objective of this paper is to construct a generalized quadratic spectrum approximation based on the Kantorovich projection method which llows us to deal with the spectral pollution problem. For this purpose, we prove that the property U (see Eq. 3) holds under weaker conditions than the norm and the collectively compact convergence. Numerical results illustrate the effectiveness and the convergence of our method.


Downloads

Published

2022-09-15

Issue

Section

Methods and algorithms of computational mathematics and their applications

Author Biographies

Somia Kamouche

University 08 mai 1945,
Department of Mathematics, Laboratory of Applied Mathematics and Modeling
P. 401, 24000, Guelma, Algeria
• Researcher

Hamza Guebbai

University 08 mai 1945,
Department of Mathematics, Laboratory of Applied Mathematics and Modeling
P. 401, 24000, Guelma, Algeria
• Leading Researcher

Mourad Ghiat

University 08 mai 1945,
Department of Mathematics, Laboratory of Applied Mathematics and Modeling
P. 401, 24000, Guelma, Algeria
• Leading Researcher

Muhammet Kurulay

Yıldız Technical University,
Faculty of Chemistry and Metallurgy, Department of Mathematics Engineering
Davutpasa Campus Esenler, 34220, Istanbul, Turkey
• Researcher


References

  1. M. Cheriet, R. Djemil, A. Khellaf, and D. Khatmi, “Dopamine Family Complexes With ß Cyclodextrin: Molecular Docking Studies,” Polycyclic Aromatic Compounds, 1-10, (2021).
    doi 10.1080/10406638.2021.1970588.
  2. E. Engel and R. M. Dreizler, Density functional theory (Springer, 2013).
  3. X. Hua, X. Chen, and W. Goddard, “Generalized generalized gradient approximation: An improved density-functional theory for accurate orbital eigenvalues,” Physical Review B, 55 (24), 16103 (1997).
    doi 10.1103/PhysRevB.55.16103.
  4. S. Kamouche, H. Guebbai, M. Ghiat, and S. Segni, “Generalized quadratic spectrum approximation in bounded and unbounded cases,” Probl. anal.Issues Anal., 10(28) (3), 53–-70 (2021).
    doi 10.15393/j3.art.2021.10150.
  5. F. Tisseur and K. Meerbergen, “The Quadratic Eigenvalue Problem,” SIAM review, 43 (2), 235-286 (2001).
    doi 10.1137/S0036144500381988.
  6. E. Bairamov, Ö. Çakar, and A. O. Çelebi, “Quadratic Pencil of Schrödinger Operators With Spectral Singularities: Discrete Spectrum And Principal Functions,” Journal of Mathematical Analysis and Applications, 216 (2), 303-320 (1997).
    doi 10.1006/jmaa.1997.5689.
  7. H. Koyunbakan, “Inverse problem for a quadratic pencil of Sturm–Liouville operator,” Journal of mathematical analysis and applications, 378 (2), 549-554 (2011).
    doi 10.1016/j.jmaa.2011.01.069.
  8. E. Cances, V. Ehrlacher, and Y. Maday, “Periodic Schrödinger operators with local defects and spectral pollution,” SIAM Journal on Numerical Analysis, 50 (6), 3016-3035 (2012).
    doi 10.1137/110855545.
  9. P. D. Hislop and I. M. Sigal, Introduction to spectral theory: With applications to Schrödinger operators, Vol. 113: (Springer Science and Business Media, 2012).
  10. M. Levitin, and E. Shargorodsky, “Spectral pollution and second-order relative spectra for self-adjoint operators,” IMA journal of numerical analysis, 24 (3), 393-416 (2004).
    doi 10.1093/imanum/24.3.393.
  11. M. Lewin and É. Séré, “Spectral pollution and how to avoid it,” Proceedings of the London mathematical society, 100 (3), 864-900 (2010).
    doi 10.1112/plms/pdp046.
  12. K. E. Atkinson, The Numerical Solution of Integral Equations of The Second Kind (Cambridge University Press, 1996).
  13. M. T. Nair, Linear operator equations: approximation and regularization (World Scientific, 2009).
  14. M. Ahues, A. Largillier, and B. Limaye, Spectral Computations For Bounded Operators (CRC Press, 2001).
  15. H. Guebbai, “Generalized Spectrum Approximation And Numerical Computation of Eigenvalues For Schrödinger’s Operators,” Lobachevskii Journal of Mathematics, 34 (1), 45-60 (2013).
    doi 10.1134/S1995080213010058.
  16. A. Khellaf, W. Merchela, and H. Guebbai, “New Sufficient Conditions For The Computation of Generalized Eigenvalues,” Russian Mathematics, 65(2), 65-68(2021).
    doi 10.3103/S1066369X21020067.
  17. A. Khellaf and H. Guebbai, “A Note On Generalized Spectrum Approximation,” Lobachevskii Journal of Mathematics, 39 (9), 1388-1395 (2018).
    doi 10.1134/S1995080218090263.
  18. M. Ahues and A. Mennouni, “A Collocation Method for Cauchy Integral Equations in L²’’. Integral Methods in Science and Engineering. Birkh854user Boston, 1-5 (2011).
    doi 10.1007/978-0-8176-8238-5_1.
  19. B. V. Limaye, Functional Analysis (New age international LTD. Delhi, 2006).