DOI: https://doi.org/10.26089/NumMet.v23r422

Construction of the generalized iterative methods used for solution of the Fredholm integral equation

Authors

  • Sarra Boukansous
  • Xie Mande
  • Boutheina Tair
  • Hamza Guebbai

Keywords:

Fredholm integral equations
numerical integration
iterative methods

Abstract

In this paper, we consider the Fredholm integral equations of the second kind and construct a new iterative scheme associated to the Nyström method, which was elaborated by Atkinson to approximate the solution over a large interval. Primarily, we demonstrate the inability to generalize the Atkinson iterative methods. Then, we describe our modified generalization in detail and discuss its advantages such as convergence of the iterative solution to the exact solution in the sense norm of the Banach space С0[a,b]. Finally, we give a numerical examples to illustrate the accuracy and reliability of our generalization.


Downloads

Published

2022-12-07

Issue

Section

Methods and algorithms of computational mathematics and their applications

Author Biographies

Sarra Boukansous

Zhejiang Gongshang University,
School of Computer Science and Information Engineering
P.R, 310018, Zhejiang, China
• PhD 

Xie Mande

Zhejiang Gongshang University,
School of Computer Science and Information Engineering
P.R, 310018, Zhejiang, China
• Professor

Boutheina Tair

University 08 mai 1945,
Department of Mathematics, Laboratory of Applied Mathematics and Modeling
P. 401, 24000, Guelma, Algeria
• Leading Researcher

Hamza Guebbai

University 08 mai 1945,
Department of Mathematics, Laboratory of Applied Mathematics and Modeling
P. 401, 24000, Guelma, Algeria
• Leading Researcher


References

  1. C. Constanda and M. E. Pérez (Eds.), Integral Methods in Science and Engineering (Chapman and Hall/CRC Press, Boca Raton, 1997).
  2. A. Peraiah, An Introduction to Radiative Transfer: Methods and Applications in Astrophysics (Cambridge University Press, Cambridge, 2002).
  3. M. Sunitha, F. Gamaoun, A. Abdulrahman, et al., “An Efficient Analytical Approach with Novel Integral Transform to Study the Two-Dimensional Solute Transport Problem,” Ain Shams Eng. J. Article 101878 (2022). doi 10.1016/j.asej.2022.101878.
  4. S. W. Ahmad, M. Sarwar, G. Rahmat, and F. Jarad, “Existence of Unique Solution of Urysohn and Fredholm Integral Equations in Complex Double Controlled Metric Type Spaces,” Math. Probl. Eng. 2022, Article ID 4791454 (2022).
    doi 10.1155/2022/4791454.
  5. C. Koelsch, S. Heflin, M. Krecicki, and D. Kotlyar, “Thermo-Mechanics Feedback for Nuclear Thermal Propulsion Analysis: Implementation and Application,” in Proc. Int. Conf. on Physics of Reactors 2022, Pittsburgh, USA, May 15-20, 2022.
    https://www.researchgate.net/publication/361039387_Thermo-mechanics_Feedback_for_Nuclear_Thermal_Propulsion_Analysis_Implementation_and_Application . Cited December 2, 2022.
  6. R. K. Bairwa and A. Kumar, “Solution of the Quadratic Integral Equation by Homotopy Analysis Method,” Ann. Pure Appl. Math. 25 (1), 17-40 (2022).
    http://www.researchmathsci.org/APAMART/APAM-v25n1-3.pdf . Cited
  7. P. Liu, A General Theory of Fluid Mechanics (Springer, Singapore, 2021).
  8. A. Akgül, N. Ahmed, A. Raza, et al., “New Applications Related to Covid-19,” Results Phys. 20 (2021).
    doi 10.1016/j.rinp.2020.103663.
  9. O. Bruno, T. Elling, R. Paffenroth, and C. Turc, “Electromagnetic Integral Equations Requiring Small Numbers of Krylov-Subspace Iterations,” J. Comput. Phys. 228 (17), 6169-6183 (2009).
    doi 10.1016/j.jcp.2009.05.020.
  10. M. Ahues, A. Largillier, and B. V. Limaye, Spectral Computations for Bounded Operators (CRC Press, Boca Raton, 2001).
  11. Y. Ikebe, “The Galerkin Method for the Numerical Solution of Fredholm Integral Equations of the Second Kind,” SIAM Rev. 14 (3), 465-491 (1972).
    doi 10.1137/1014071.
  12. K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework (Springer, New York, 2001).
  13. H. U. Molla and G. Saha, “Numerical Approximation of Fredholm Integral Equation (FIE) of 2nd Kind Using Galerkin and Collocation Methods,” GANIT: J. Bangladesh Math. Soc. 38, 11-25 (2018).
    doi 10.3329/ganit.v38i0.39782.
  14. A. Domingo, “Numerical Solutions of Fredholm Integral Equations Using Collocation-Tau Method,” Int. J. Basic Sci. Appl. Comput. 1 (5), 8-13 (2015).
  15. D. S. Mohamed and R. A. Taher, “Comparison of Chebyshev and Legendre Polynomials Methods for Solving Two Dimensional Volterra-Fredholm Integral Equations,” J. Egypt. Math. Soc. 25 (3), 302-307 (2017).
    doi 10.1016/j.joems.2017.03.002.
  16. R. Kaya and H. Taşeli, “A Rayleigh-Ritz Method for Numerical Solutions of Linear Fredholm Integral Equations of the Second Kind,” J. Math. Chem. 60, 1107-1129 (2022).
    doi 10.1007/s10910-022-01344-9.
  17. Y. Guan, T. Fang, D. Zhang, and C. Jin, “Solving Fredholm Integral Equations Using Deep Learning,” Int. J. Appl. Comput. Math. 8, Article Number: 87 (2022).
    doi 10.1007/s40819-022-01288-3.
  18. D. A. Hammad, M. S. Semary, and A. G. Khattab, “Ten Non-Polynomial Cubic Splines for Some Classes of Fredholm Integral Equations,” Ain Shams Eng. J. 13 (4), Article 101666 (2022).
    doi 10.1016/j.asej.2021.101666.
  19. R. Qiu, L. Yan, and X. Duan, “Solving Fredholm Integral Equation of the First Kind Using Gaussian Process Regression,” Appl. Math. Comput. 425, Article 127032 (2022).
    doi 10.1016/j.amc.2022.127032.
  20. N. Velmurugan and S. T. Priya, “Solution of linear Fredholm Integral Equation Second Kind with Taylor Expansion Using Matlab,” Int. J. Mech. Eng. 7 (4) (2022).
    https://kalaharijournals.com/resources/APRIL_99.pdf . Cited December 2, 2022.
  21. S. Lemita and H. Guebbai, “New Process to Approach Linear Fredholm Integral Equations Defined on Large Interval,” Asian-Eur. J. Math. 12 (1), Article 19500098 (2019).
    doi 10.1142/S1793557119500098.
  22. K. Atkinson, “Iterative Variants of the Nyström Method for the Numerical Solution of Integral Equations,” Numer. Math. 22 (1), 17-31 (1974).
    doi 10.1007/BF01436618.

 How to cite   
Tair Boutheina, Segni Sami, Guebbai Hamza and Ghait Mourad Two numerical treatments for solving the linear integro-differential Fredholm equation with a weakly singular kernel // Numerical Methods and Programming. 2022. 23, No 2. 117–136. doi 10.26089/NumMet.v23r208.

TEX CODE:

Tair B. , Segni S. , Guebbai H. et al., (2022) “Two numerical treatments for solving the linear integro-differential Fredholm equation with a weakly singular kernel,” Numerical Methods and Programming, vol. 23, no. 2, pp. 117–136. https://doi.org/10.26089/NumMet.v23r208

TEX CODE:

B. Tair, S. Segni, H. Guebbai et al., “Two numerical treatments for solving the linear integro-differential Fredholm equation with a weakly singular kernel,” Numerical Methods and Programming 23, no. 2 (2022): 117–136, https://doi.org/10.26089/NumMet.v23r208

TEX CODE:

Tair B. , Segni S. , Guebbai H. et al. Two numerical treatments for solving the linear integro-differential Fredholm equation with a weakly singular kernel. Numerical Methods and Programming. 2022;23(2):117–136.. DOI:10.26089/NumMet.v23r208

TEX CODE:



Featured articles

I.G. Okladnikov, A.V. Skvortsov, A.G. Titov, T.M. Shul'gina, E.P. Gordov, V.Yu. Bogomolov, Yu.V. Martynova, S.P. Syshchenko