DOI: https://doi.org/10.26089/NumMet.v23r417

Parallel sweep algorithm for solving direct and inverse problems for time-fractional diffusion equation

Authors

  • Elena N. Akimova
  • Murat A. Sultanov
  • Vladimir E. Misilov
  • Yerkebulan Nurlanuly

Keywords:

fractional diffusion equation
Caputo derivative
initial boundary problem
inverse problem
time-dependent right-hand part,
parallel sweep method
multicore processors
OpenMP

Abstract

The work is devoted to construction of parallel algorithm for solving the direct initial boundary and inverse right-hand part identification problems for the time-fractional diffusion equation. Application of a priori information on the solution at the some inner point allows one to reduce the inverse problem to an initial boundary problem for the auxiliary equation. After applying the finite-difference scheme the problems are reduced to solving systems of linear algebraic equations. The developed algorithms are based on the parallel sweep method and implemented for the multicore processor using the OpenMP technology. Numerical experiments were performed to study the performance of the developed algorithms.


Published

2022-10-09

Issue

Section

Parallel software tools and technologies

Author Biographies

Elena N. Akimova

Murat A. Sultanov

Vladimir E. Misilov

Yerkebulan Nurlanuly


References

  1. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo (Eds.), Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).
  2. M. Cui, “Convergence Analysis of High-Order Compact Alternating Direction Implicit Schemes for the Two-Dimensional Time Fractional Diffusion Equation,” Numer. Algor. 62, 383-409 (2013).
    doi 10.1007/s11075-012-9589-3.
  3. B. Jin and W. Rundell, “A Tutorial on Inverse Problems for Anomalous Diffusion Processes,” Inverse Probl. 31 (3) (2015).
    doi 10.1088/0266-5611/31/3/035003.
  4. N. S. Belevtsov and S. Yu. Lukashchuk, “Lie Group Analysis of 2-Dimensional Space-Fractional Model for Flow in Porous Media,” Math. Meth. Appl. Sci. 41 (18), 9123-9133 (2018).
    doi 10.1002/mma.5078.
  5. M. A. Sultanov, D. K. Durdiev, and A. A. Rahmonov, “Construction of an Explicit Solution of a Time-Fractional Multidimensional Differential Equation,” Mathematics. 9 (17) (2021).
    doi 10.3390/math9172052.
  6. H. Scher and E. W. Montroll, “Anomalous Transit-Time Dispersion in Amorphous Solids,” Phys. Rev. B 12 (6) (1975).
    doi 10.1103/PhysRevB.12.2455.
  7. S. C. Kou, “Stochastic Modeling in Nanoscale Biophysics: Subdiffusion within Proteins,” Ann. Appl. Stat. 2 (2), 501-535 (2008).
    doi 10.1214/07-AOAS149.
  8. R. Metzler, J.-H. Jeon, A. G. Cherstvy, and E. Barkai, “Anomalous Diffusion Models and Their Properties: Non-Stationarity, Non-Ergodicity, and Ageing at the Centenary of Single Particle Tracking,” Phys. Chem. Chem. Phys. 16, 24128-24164 (2014).
    doi 10.1039/C4CP03465A.
  9. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics (De Gruyter, New York, 2007; LKI, Moscow, 2009).
    doi 10.1515/9783110205794.
  10. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods (World Scientific, Singapore, 2012).
    doi 10.1142/10044.
  11. C. Li and F. Zeng, Numerical Methods for Fractional Calculus (CRC Press, New York, 2015).
    doi 10.1201/b18503.
  12. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999).
  13. T. Wei and Z. Q. Zhang, “Reconstruction of a Time-Dependent Source Term in a Time-Fractional Diffusion Equation,” Eng. Anal. Bound. Elem. 37 (1), 23-31 (2013).
    doi 10.1016/j.enganabound.2012.08.003.
  14. A. K. Omran, M. A. Zaky, A. S. Hendy, and V. G. Pimenov, “An Efficient Hybrid Numerical Scheme for Nonlinear Multiterm Caputo Time and Riesz Space Fractional-Order Diffusion Equations with Delay,” J. Funct. Spaces 2021, Art. ID 5922853 (2021).
    doi 10.1155/2021/5922853.
  15. V. G. Pimenov and E. E. Tashirova, “Numerical Method for Fractional Diffusion-Wave Equations with Functional Delay,” Izv. Inst. Matem. Inform. Udmurt. State Univer. 57, 156-169 (2021).
    doi 10.35634/2226-3594-2021-57-07.
  16. N. S. Belevtsov and S. Yu. Lukashchuk, “Parallel Algorithm for Numerical Solving of Fractional Differential Generalized Poisson Equation,” in Proc. Int. Conf. on Parallel Computing Technologies, Kaliningrad, Russia, April 2-4, 2019 (South Ural State Univ., Chelyabinsk, 2019), pp. 165-174.
  17. R. R. Gubaidullin, S. Yu. Lukashchuk, and A. V. Yuldashev, “Parallel Algorithms for Solving Initial Boundary Problems for Fractional Differential Equations,” in Proc. Int. Conf. on Parallel Computing Technologies, Kaliningrad, Russia, April 2-4, 2019 (South Ural State Univ., Chelyabinsk, 2019), pp. 232-238.
  18. C. Gong, W. Bao, G. Tang, et al., “A Parallel Algorithm for the Two-Dimensional Time Fractional Diffusion Equation with Implicit Difference Method,” Sci. World J. 2014. Article ID 219580 (2014).
    doi 10.1155/2014/219580.
  19. X. Li and Y. Su, “A Parallel in Time/Spectral Collocation Combined with Finite Difference Method for the Time Fractional Differential Equations,” J. Algorithms Comput. Technol. 15 (2021).
    doi 10.1177/17483026211008409.
  20. P. de Luca, A. Galletti, H. R. Ghehsareh, et al., “A GPU-CUDA Framework for Solving a Two-Dimensional Inverse Anomalous Diffusion Problem,” in Advances in Parallel Computing. Parallel Comput. Technol. Trends (Amsterdam, IOS Press, 2020), Vol. 36, pp. 311-320.
    doi 10.3233/APC200056.
  21. X. Yang and L. Wu, “A New Kind of Parallel Natural Difference Method for Multi-Term Time Fractional Diffusion Model,” Mathematics 8 (4), 596-615 (2020).
    doi 10.3390/math8040596.
  22. Q. Wang, J. Liu, C. Gong, et al., “An Efficient Parallel Algorithm for Caputo Fractional Reaction-Diffusion Equation with Implicit Finite-Difference Method,” Adv. Differ. Equ. 2016. Article Number: 207 (2016).
    doi 10.1186/s13662-016-0929-9.
  23. N. Alimbekova, A. Berdyshev, and D. Baigereyev, “Parallel Implementation of the Algorithm for Solving a Partial Differential Equation with a Fractional Derivative in the Sense of Riemann-Liouville,” in Proc. IEEE Int. Conf. on Smart Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, April 28-30, 2021.
  24. M. A. Sultanov, E. N. Akimova, V. E. Misilov, and Y. Nurlanuly, “Parallel Direct and Iterative Methods for Solving the Time-Fractional Diffusion Equation on Multicore Processors,” Mathematics 10 (3). Article Number: 323 (2022).
    doi 10.3390/math10030323.
  25. N. N. Yanenko, A. N. Konovalov, A. N. Bugrov, and G. V. Shustov, “Organization of Parallel Computing and the Thomas Algorithm Parallelization,” in Numerical Methods in Continuum Mechanics (Comput. Center Sib. Branch of USSR Acad. Sci., Novosibirsk, 1978), Vol. 9, Issue 7, pp. 139-146.
  26. E. N. Akimova, Parallel Algorithms for Solving the Gravimetry, Magnetometry, and Elasticity Problems on Multiprocessor Systems with Distributed Memory , Doctoral Dissertation in Mathematics and Physics (Institute of Mathematics and Mechanics, Ekaterinburg, 2009).
  27. N. J. Ford and A. C. Simpson, “The Numerical Solution of Fractional Differential Equations: Speed Versus Accuracy,” Numer. Algorithms 26 (4), 333-346 (2001).
    doi 10.1023/A: 1016601312158.