Application of the Gerchberg-Papoulis method in Doppler tomography

Authors

  • V.V. Pickalov
  • A.V. Likhachev

Keywords:

доплеровская томография
реконструкция функций
метод Гершберга-Папулиса
метод регуляризации
численное моделирование

Abstract

The simplified formulation of the Doppler tomography problem leads to a reconstruction of a function of three variables from a set of its plane integrals. The Gerchberg-Papoulis method is suggested to solve this problem. An iterative regularizing algorithm is developed on the basis of this method. A number of numerical simulations are carried out.


Published

2004-09-21

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

V.V. Pickalov

A.V. Likhachev


References

  1. Пикалов В.В., Мельникова Т.С. Томография плазмы. Новосибирск: Наука, 1995.
  2. Poluektov N.P., Efremov N.P. New tomographic approach for deconvolution of ion velocity and temperature profiles in a plasma centrifuge // Appl. Phys. (D). 1998. 31, N 8. 988-995.
  3. Balandin A.L., Ono Y. Tomographic determination of plasma velocity with the use of ion Doppler spectroscopy // Eur. Phys. J. (D). 2001. 17, N 3. 337-344.
  4. Balandin A.L., Murata Y., Ono Y. Radial velocity profile reconstruction by Doppler spectroscopy measurements // Eur. Phys. J. (D). 2003. 27, N 2. 125-130.
  5. Koslover R., McWilliams R. Measurement of multidimensional ion velocity distributions by optical tomography // Rev. Sci. Instrum. 1986. 57, N 10. 2441-2448.
  6. Kontrym-Sznajd G., Samsel-Czeka l a M. New reconstruction method of electron momentum density from Compton profiles // Appl. Phys. (A). 2000. 70, N 1. 89-92.
  7. Samsel-Czekala M., Kontrym-Sznajd G., Dцring G., Schьlke W., Kwiatkowska J., Maniawski F., Kaprzyk S., Bansil A. Electron momentum density in m Cu _ 0.9 m Al _ 0.1 // Appl. Phys. (A). 2003. 76, N 1. 87-92.
  8. Лихачев А.В., Пикалов В.В. Об одной постановке задачи хронотомографии // Оптика и спектроскопия. 1996. 80, № 4. 581-589.
  9. Levin G.G., Vishnyakov G.N. On the possibilities of chronotomography of high speed processes // Optics Communications. 1985. 56, N 4. 231-234.
  10. Matsumoto K., Mennickent R.E. On the secondary star of the galactic supersoft X-ray source RX J0925.7-4758 and Doppler tomography of the emission lines // Astron. Astrophys. 2000. 356, N 2. 579-584.
  11. Torres M.A. P., Casares J., Mart’ i nez-Pais I.G., Charles P.A. Rotational broadening and Doppler tomography of the quiescent X-ray nova Centaurus X-4 // Mon. Not. R. Astron. Soc. 2002. 334, N 1. 233-240.
  12. Challenor P.G., Cipollini G., Cromwell D. Use of 3D Radon transform to examine the properties of oceanic Rossby waves // J. Atmospheric and Oceanic Technology. 2001. 18, N 6. 1558-1566.
  13. Lindmo T., Smithies D.J., Chen Z., Nelson J.S., Milner T.E. Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulations // Phys. Med. Biol. 1998. 43, N 10. 3045-3064.
  14. Yang V.X. D., Gordon M.L., Mok A., Zhao Y., Chen Z., Cobbold R.S. C., Wilson B.C., Vitkin I.A. Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation // Optics Communications. 2002. 208, N 4-6. 209-214.
  15. Наттерер Ф. Математические аспекты компъютерной томографии. М: Мир, 1990.
  16. Grangeat P. Mathematical framework of cone-beam 3D reconstruction via the first derivative of the Radon transform // Mathematical Methods in Tomography. Proceedings of conference. Oberwolfach, Germany, 5-11 June, 1990. Berlin: Springer-Verlag, 1991.
  17. Jacobson C., Danielson P.-E. Three-dimensional reconstruction from cone-beam data in O(N愦灭;circ 3 log N)-time // Phys. Med. Biol. 1994. 39, N 3. 477-491.
  18. Seger M.M. Three-dimensional reconstruction from cone-beam data using an efficient Fourier technique combined with a special interpolation filter // Phys. Med. Biol. 1998. 43, N 4. 951-959.
  19. Taguchi K., Zeng G.L., Gullberg G.T. Cone-beam image reconstruction using spherical harmonics // Phys. Med. Biol. 2001. 46, N 6. 127-138.
  20. Баландин А.Л., Преображенский Н.Г., Седельников А.И. Томографическое определение трехмерного распределения частиц по скоростям // ПМТФ. 1989. 6. 34-37.
  21. Defrise M., De Mol C. A regularized iterative algorithm for limited-angle inverse Radon transform // Optica Acta. 1983. 30, N 4. 403-408.
  22. Melnikova T.S., Pickalov V.V. Computer-aided plasma tomography // High temperature dust laden jets in plasma technology. Proc. Inter. Workshop. Novosibirsk, USSR, 6-8 September 1988. Utrecht: VSP, 1990.
  23. Balandin A.L., Likhachov A.V., Panferov N.V., Pickalov V.V., Rupasov A.A., Shikanov A.S. Emission microtomography of plasma // Proceedings SPIE. 1992. 1843. 68-82.
  24. Лихачев А.В., Пикалов В.В. Частотная фильтрация в алгебраических алгоритмах трехмерной томографии // Автометрия. 1995. 4. 83-89.
  25. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1986.