Numerical solution of anisotropic Biot equations of poroelastic fluid-saturated media in quasi-static state for numerical upscaling




poroelasticity, Biot theory, wave-induced fluid flow, attenuation, quasi-static loading, upscaling, finite differences


In this paper we present the numerical algorithm for quasi-static loading of porous fluidsaturated sample used to solve the numerical upscaling problem for fractured porous fluid-saturated media. Numerical upscaling is aimed to recover homogeneous anisotropic viscoelastic media, which is equivalent to the initial poroelastic media and defined by complex-valued frequency-dependent stiffness tensor. We apply recovered stiffness tensor components to estimate both frequencydependent attenuation and phase velocity of seismic wave. Numerical upscaling procedure includes numerical solution of boundary-value problem for Biot poroelasticity equations for anisotropic fluid-saturated media in the frequency domain for a set of frequencies and different boundary conditions. Numerical solution of Biot system of equations is based on finite-difference approximation of equations in quasi-static form, and for resulting SLAE we apply direct solver. Applied direct solver support effective solution of SLAE for several right-hand vectors essential for numerical upscaling. Presented algorithm realization allows us solve 2D problem on computational grid of 2000 × 2000 nodes using a single machine, what makes it capable to perform the upscaling for detailed representative fractured porous samples. To demonstrate the applicability of the algorithm we perform several sets of numerical experiments aimed at the investigation of fracture connectivity and microscale anisotropy effects on wave-induced fluid flow attenuation and phase velocity of seismic wave propagating in fractured porous fluid-saturated media.

Author Biographies

Sergey A. Solovyev

Mikhail A. Novikov

Vadim V. Lisitsa


  1. N. Salaun, H. Toubiana, J.-B. Mitschler, et al., “High-Resolution 3D Seismic Imaging and Refined Velocity Model Building Improve the Image of a Deep Geothermal Reservoir in the Upper Rhine Graben,” Lead. Edge 39 (12), 857-863 (2020).
    doi 10.1190/tle39120857.1.
  2. N. C. M. Marty, V. Hamm, C. Castillo, et al., “Modelling Water-Rock Interactions Due to Long-Term Cooled-Brine Reinjection in the Dogger Carbonate Aquifer (Paris Basin) Based on in-situ Geothermal Well Data,” Geothermics 88, Article Number 101899 (2020).
    doi 10.1016/j.geothermics.2020.101899.
  3. H. P. Menke, C. A. Reynolds, M. G. Andrew, et al, “4D Multi-Scale Imaging of Reactive Flow in Carbonates: Assessing the Impact of Heterogeneity on Dissolution Regimes Using Streamlines at Multiple Length Scales,” Chem. Geol. 481, 27-37 (2018).
    doi 10.1016/j.chemgeo.2018.01.016.
  4. F. Huang, P. Bergmann, C. Juhlin, et al., “The First Post-Injection Seismic Monitor Survey at the Ketzin Pilot CO_2 Storage Site: Results from Time-Lapse Analysis,” Geophys. Prospect. 66 (1), 62-84 (2018).
    doi 10.1111/1365-2478.12497.
  5. E. Kaya and S. J. Zarrouk, “Reinjection of Greenhouse Gases into Geothermal Reservoirs,” Int. J. Greenh. Gas Control 67, 111-129 (2017).
    doi 10.1016/j.ijggc.2017.10.015.
  6. M. Prasad, S. Glubokovskikh, T. Daley, et al., “CO_2 Messes with Rock Physics,” Lead. Edge 40 (6), 424-432 (2021).
    doi 10.1190/tle40060424.1.
  7. B. Quintal, E. Caspari, K. Holliger, and H. Steeb, “Numerically Quantifying Energy Loss Caused by Squirt Flow,” Geophys. Prospect. 67 (8), 2196-2212 (2019).
    doi 10.1111/1365-2478.12832.
  8. Y. Alkhimenkov, E. Caspari, S. Lissa, and B. Quintal, “Azimuth-, Angle- and Frequency-Dependent Seismic Velocities of Cracked Rocks Due to Squirt Flow,” Solid Earth 11 (3), 855-871 (2020).
    doi 10.5194/se-11-855-2020.
  9. S. G. Solazzi, S. Lissa, J. G. Rubino, and K. Holliger, “Squirt Flow in Partially Saturated Cracks: A Simple Analytical Model,” Geophys. J. Int. 227 (1), 680-692 (2021).
    doi 10.1093/gji/ggab249.
  10. J. G. Rubino, T. M. Müller, L. Guarracino, et al., “Seismoacoustic Signatures of Fracture Connectivity,” J. Geophys. Res. Solid Earth 119 (3), 2252-2271 (2014).
    doi 10.1002/2013JB010567.
  11. L. Kong, B. Gurevich, Y. Zhang, and Y. Wang, “Effect of Fracture Fill on Frequency-Dependent Anisotropy of Fractured Porous Rocks,” Geophys. Prospect. 65 (6), 1649-1661 (2017).
    doi 10.1111/1365-2478.12505.
  12. E. Caspari, M. Novikov, V. Lisitsa, et al., “Attenuation Mechanisms in Fractured Fluid-Saturated Porous Rocks: A Numerical Modelling Study,” Geophys. Prospect. 67 (4), 935-955 (2019).
    doi 10.1111/1365-2478.12667.
  13. J. Guo and B. Gurevich, “Effects of Coupling between Wave-Induced Fluid Flow and Elastic Scattering on P-Wave Dispersion and Attenuation in Rocks with Aligned Fractures,” J. Geophys. Res. Solid Earth 125 (3), Article Number e2019JB018685 (2020).
    doi 10.1029/2019JB018685.
  14. S. G. Solazzi, J. Hunziker, E. Caspari, et al., “Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case,” J. Geophys. Res. Solid Earth 125 (8), Article Number e2020JB019960 (2020).
    doi 10.1029/2020JB019960.
  15. J. Guo, L. Zhao, X. Chen, et al., “Theoretical Modelling of Seismic Dispersion, Attenuation, and Frequency-Dependent Anisotropy in a Fluid Saturated Porous Rock with Intersecting Fractures,” Geophys. J. Int. 230 (1), 580-606 (2022).
    doi 10.1093/gji/ggac070.
  16. T. M. Müller, B. Gurevich, and M. Lebedev, “Seismic Wave Attenuation and Dispersion Resulting from Wave-Induced Flow in Porous Rocks -- A Review,” Geophysics 75 (5), 75A147-75A164 (2020).
    doi 10.1190/1.3463417.
  17. J. Guo, J. G. Rubino, S. Glubokovskikh, and B. Gurevich, “Effects of Fracture Intersections on Seismic Dispersion: Theoretical Predictions Versus Numerical Simulations,” Geophys. Prospect. 65 (5), 1264-1276 (2017).
    doi 10.1111/1365-2478.12474.
  18. J. Hunziker, M. Favino, E. Caspari, et al., “Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks,” J. Geophys. Res. Solid Earth 123 (1), 125-143 (2018).
    doi 10.1002/2017JB014566.
  19. M. A. Novikov, Ya. V. Bazaikin, V. V. Lisitsa, and A. A. Kozyaev, “Numerical Modeling of Wave Propagation in Fractured Porous Fluid-Saturated Media,” Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 19 (3), 235-252 (2018).
    doi 10.26089/NumMet.v19r323.
  20. J. M. Carcione and F. Cavallini, “A Rheological Model for Anelastic Anisotropic Media with Applications to Seismic Wave Propagation,” Geophys. J. Int. 119 (1), 338-348 (1994).
    doi 10.1111/j.1365-246X.1994.tb00931.x.
  21. S. Ovaysi, M. F. Wheeler, and M. Balhoff, “Quantifying the Representative Size in Porous Media,” Transp. Porous Med. 104 (2), 349-362 (2014).
    doi 10.1007/s11242-014-0338-z.
  22. Y. Bazaikin, B. Gurevich, S. Iglauer, et al., “Effect of CT Image Size and Resolution on the Accuracy of Rock Property Estimates,” J. Geophys. Res. Solid Earth 122 (5), 3635-3647 (2017).
    doi 10.1002/2016JB013575.
  23. M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range,” J. Acoust. Soc. Am. 28 (2), 168-178 (1956).
    doi 10.1121/1.1908239.
  24. M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range,” J. Acoust. Soc. Am. 28 (2), 179-191 (1956).
    doi 10.1121/1.1908241.
  25. G. E. Backus, “Long-Wave Elastic Anisotropy Produced by Horizontal Layering,” J. Geophys. Res. 67 (11), 4427-4440 (1962).
    doi 10.1029/JZ067i011p04427.
  26. M. Schoenberg and F. Muir, “A Calculus for Finely Layered Anisotropic Media,” Geophysics 54 (5), 581-589 (1989).
    doi 10.1190/1.1442685.
  27. T. Khachkova, V. Lisitsa, D. Kolyukhin, and G. Reshetova, “Influence of Interfaces Roughness on Elastic Properties of Layered Media,” Probabilistic Eng. Mech. 66, Article Number 103170 (2021).
    doi 10.1016/j.probengmech.2021.103170.
  28. W. Zhang, G. Dai, F. Wang, et al., “Using Strain Energy-Based Prediction of Effective Elastic Properties in Topology Optimization of Material Microstructures,” Acta Mech. Sin. 23 (1), 77-89 (2007).
    doi 10.1007/s10409-006-0045-2.
  29. H. Andrä, N. Combaret, J. Dvorkin, et al., “Digital Rock Physics Benchmarks - Part II: Computing Effective Properties,” Comput. Geosci. 50, 33-43 (2013).
    doi 10.1016/j.cageo.2012.09.008.
  30. J. G. Rubino, L. Guarracino, T. M. Müller, and K. Holliger, “Do Seismic Waves Sense Fracture Connectivity?,” Geophys. Res. Lett. 40 (4), 692-696 (2013).
    doi 10.1002/grl.50127.
  31. V. Vavryčuk, “Velocity, Attenuation, and Quality Factor in Anisotropic Viscoelastic Media: A Perturbation Approach,” Geophysics 73 (5), D63-D73 (2008).
    doi 10.1190/1.2921778.
  32. J. Virieux, “P-SV Wave Propagation in Heterogeneous Media: Velocity-Stress Finite-Difference Method,” Geophysics 51 (4), 889-901 (1986).
    doi 10.1190/1.1442147.
  33. A. R. Levander, “Fourth-Order Finite-Difference P-SV Seismograms,” Geophysics. 53 (11), 1425-1436 (1988).
    doi 10.1190/1.1442422.
  34. V. Lisitsa and D. Vishnevskiy, “Lebedev Scheme for the Numerical Simulation of Wave Propagation in 3D Anisotropic Elasticity,” Geophys. Prospect. 58 (4), 619-635 (2010).
    doi 10.1111/j.1365-2478.2009.00862.x.
  35. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; CRC Press, Boca Raton, 2001). doi10.1201/9780203908518.
  36. V. Lisitsa, O. Podgornova, and V. Tcheverda, “On the Interface Error Analysis for Finite Difference Wave Simulation,” Comput. Geosci. 14 (4), 769-778 (2010).
    doi 10.1007/s10596-010-9187-1.
  37. D. Vishnevsky, V. Lisitsa, V. Tcheverda, and G. Reshetova, “Numerical Study of the Interface Errors of Finite-Difference Simulations of Seismic Waves,” Geophysics 79 (4), T219-T232 (2014).
    doi 10.1190/geo2013-0299.1.
  38. P. Moczo, J. Kristek, and M. Gális, The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures (Cambridge University Press, Cambridge, 2014). doi10.1017/CBO9781139236911.
  39. P. Moczo, J. Kristek, V. Vavryčuk, et al., “3D Heterogeneous Staggered-Grid Finite-Difference Modeling of Seismic Motion with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities,” Bull. Seismol. Soc. Am. 92 (8), 3042-3066 (2002).
    doi 10.1785/0120010167.
  40. R. Mittal and G. Iaccarino, “Immersed Boundary Methods,” Annu. Rev. Fluid Mech. 37 (1), 239-261 (2005).
    doi 10.1146/annurev.fluid.37.061903.175743.
  41. V. Lisitsa, Y. Bazaikin, and T. Khachkova, “Computational Topology-Based Characterization of Pore Space Changes Due to Chemical Dissolution of Rocks,” Appl. Math. Model. 88, 21-37 (2020).
    doi 10.1016/j.apm.2020.06.037.
  42. Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM, Philadelphia, 2003; Mosk. Gos. Univ., Moscow, 2013). doi10.1137/1.9780898718003.
  43. J. G. Rubino, E. Caspari, T. M. Müller, et al., “Numerical Upscaling in 2-D Heterogeneous Poroelastic Rocks: Anisotropic Attenuation and Dispersion of Seismic Waves,” J. Geophys. Res. Solid Earth 121 (9), 6698-6721 (2016).
    doi 10.1002/2016JB013165.
  44. D. E. White, N. G. Mikhailova, and F. M. Lyakhovitskii, “Propagation of Seismic Waves in Layered Media Saturated with Fluid and Gas,” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 10, 44-52 (1975).
  45. M. A. Novikov, V. V. Lisitsa, and Y. V. Bazaikin, “Wave Propagation in Fractured-Porous Media with Different Percolation Length of Fracture Systems,” Lobachevskii J. Math. 41 (8), 1533-1544 (2020).
    doi 10.1134/S1995080220080144.
  46. Y. Al-Khulaifi, Q. Lin, M. J. Blunt, and B. Bijeljic, “Pore-Scale Dissolution by CO_2 Saturated Brine in a Multimineral Carbonate at Reservoir Conditions: Impact of Physical and Chemical Heterogeneity,” Water Resour. Res. 55 (4), 3171-3193 (2019).
    doi 10.1029/2018WR024137.
  47. D. Prokhorov, V. Lisitsa, T. Khachkova, et al., “Topology-Based Characterization of Chemically-Induced Pore Space Changes Using Reduction of 3D Digital Images,” J. Comput. Sci. 58, Article Number 101550 (2022).
    doi 10.1016/j.jocs.2021.101550.



How to Cite

Соловьев С.А., Новиков М.А., Лисица В.В. Numerical Solution of Anisotropic Biot Equations of Poroelastic Fluid-Saturated Media in Quasi-Static State for Numerical Upscaling // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2023. 24. 67-88. doi 10.26089/NumMet.v24r106



Methods and algorithms of computational mathematics and their applications