DOI: https://doi.org/10.26089/NumMet.v24r210

Validation calculations of hemodynamic problems using the FlowVision software package in parallel mode

Authors

  • Maria D. Kalugina
  • Vladimir S. Kashirin
  • Alexey I. Lobanov

Keywords:

parallel computing
FlowVision software package
hemodynamics
validation calculations

Abstract

The calculations of the test problem associated with the simulation of the flow in an idealized medical device were carried out in the FlowVision software package. The calculations were carried out for laminar, turbulent and transitional flow regimes. The scalability of the problem is studied. Based on the solution of the test problem, a conclusion was made about the possibility of using the FlowVision software package to solve hemodynamic problems.


Published

2023-04-06

Issue

Section

Parallel software tools and technologies

Author Biographies

Maria D. Kalugina

TESIS, LLC
• Engineer

Vladimir S. Kashirin

TESIS, LLC
• Head of Department

Alexey I. Lobanov


References

  1. Yu. Vassilevski, M. Olshanskii, S. Simakov, et al., Personalized Computational Hemodynamics. Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy (Academic Press, Cambridge, 2020).
    doi 10.1016/C2017-0-02421-7.
  2. Z. Chen, Y. Fan, X. Deng, and Z. Xu, “A New Way to Reduce Flow Disturbance in Endovascular Stents: A Numerical Study,” Artificial Organs 35 (4), 392-397 (2011).
    doi 10.1111/j.1525-1594.2010.01106.x.
  3. G. V. Krivovichev, “Comparison of Inviscid and Viscid One-Dimensional Models of Blood Flow in Arteries,” Appl. Math. Comput. 418 (C), Article Number 126856 (2022).
    doi 10.1016/j.amc.2021.126856.
  4. Computational Fluid Dynamics.
    https://ncihub.org/wiki/FDA_CFD . Cited March 14, 2023.
  5. S. F. C. Stewart, E. G. Paterson, G. W. Burgreen, et al., “Assessment of CFD Performance in Simulations of an Idealized Medical Device: Results of FDA’s First Computational Interlaboratory Study,” Cardiovasc. Eng. Technol. 3 (2), 139-160 (2012).
    doi 10.1007/s13239-012-0087-5.
  6. A. Kermani, A. Vanegas, and A. Spann, “Blood Damage Modeling of FDA Benchmark Nozzle,”
    https://www.comsol.ru/paper/blood-damage-modeling-of-fda-benchmark-nozzle-93171 . Cited March 14, 2023.
  7. C. Prud’homme, V. Chabannes, V. Doyeux, et al., “Feel++: A Computational Framework for Galerkin Methods and Advanced Numerical Methods,” ESAIM: Proc. 38 (1), 429-455 (2012).
    doi 10.1051/proc/201238024.
  8. V. Chabannes, C. Prud’Homme, M. Szopos, and R. Tarabay, “High Order Finite Element Simulations for Fluid Dynamics Validated by Experimental Data from the FDA Benchmark Nozzle Model,” in Proc. 5th Int. Conf. on Computational and Mathematical Biomedical Engineering, Pittsburgh, USA, April 10-12, 2017.
    https://hal.science/hal-01429685 . Cited March 14, 2023.
  9. N. Abad, R. Vinuesa, P. Schlatter, et al., “Simulation Strategies for the Food and Drug Administration Nozzle Using Nek5000,” AIP Adv. 10 (2), Article Number 025033 (2020).
    doi 10.1063/1.5142703.
  10. C.-J. Huang, I. Çaldichoury, F. Del Pin, and R. R. Paz, “CFD Validations with FDA Benchmarks of Medical Devices Flows,” in Proc. 15th International LS-DYNA Users Conference, Detroit, USA, June 10-12, 2018.
    https://www.researchgate.net/publication/337448926_Validations_with_FDA_Benchmarks_of_Medical_Devices_Flows . Cited March 14, 2023.
  11. V. Zmijanovic, S. Mendez, V. Moureau, and F. Nicoud, “About the Numerical Robustness of Biomedical Benchmark Cases: Interlaboratory FDA’s Idealized Medical Device,” Int. J. Numer. Methods Biomed. Eng. 33 (1), 1-19 (2016).
    doi 10.1002/cnm.2789.
  12. A. A. Aksenov, “FlowVision: Industrial Computational Fluid Dynamics,” Comput. Res. Model. 9 (1), 5-20 (2017).
    doi 10.20537/2076-7633-2017-9-5-20.
  13. S. V. Zhluktov and A. A. Aksenov, “Wall Functions for High-Reynolds Calculations in the FlowVision Software Package,” Comput. Res. Model. 7 (6), 1221-1239 (2015).
    doi 10.20537/2076-7633-2015-7-6-1221-1239.
  14. S. V. Zhluktov, A. A. Aksenov, and D. V. Savitsky, “High Reynolds Calculations of Turbulent Heat Transfer in the FlowVision Software Package,” Comput. Res. Model. 10 (4), 461-481 (2018).
    doi 10.20537/2076-7633-2018-10-4-461-481.
  15. V. S. Akimov, D. P. Silaev, A. S. Simonov, and A. S. Semenov, “Scalability Study of FlowVision on the Cluster with Angara Interconnect,” Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie) 18 (4), 406-415 (2017).
    doi 10.26089/NumMet.v18r434.
  16. United Computing Cluster.
    http://comp.nrcki.ru/pages/main/12530/12546/index.shtml . Cited March 15, 2023.
  17. V. N. Konshin, “Parallel Implementation of the FlowVision Software Package,” CAD and Graphics, No. 12 (2006).