On the hybrid projection method to a stable manifold of a one-dimensional Burgers-type equation





Burgers type equation, a stable manifold, numerical methods


The paper considers a Burgers type equation with polynomial nonlinearity and zero boundary conditions. For the range of parameters of interest, the identically zero solution of the problem is locally unstable, and in its neighborhood there exists a stable manifold having finite codimension. For the approximate construction of this manifold a combined iterative algorithm the initial data for which is constructed by an analytical method and has quadratic accuracy is proposed. It is numerically shown how significant this modification is allows to reduce the computational complexity of projection on the desired manifold for typical parameter values compared to the standard linear approximation. The results obtained allow generalization to multidimensional dissipative equations of a wide class and can be used to solve problems of asymptotic stabilization based on initial data, boundary conditions and a right-hand side.

Author Biographies

Anastasia B. Kalinina

School No. 2007,
• Methodologist

Andrey A. Kornev

Vladimir S. Nazarov


  1. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasi-linear Equations of Parabolic Type (Nauka, Moscow, 1967; Amer. Math. Soc., Providence, 1968).
  2. A. V. Fursikov, “Stabilizability of a Quasi-Linear Parabolic Equation by Means of a Boundary Control with Feedback,” Mat. Sb. 192 (4), 115-160 (2001) [Sb. Math. 192 (4), 593-639 (2001)].
    doi 10.1070/SM2001v192n04ABEH000560.
  3. A. M. Lyapunov, The General Problem of the Stability of Motion (Izd. Akad. Nauk SSSR, Moscow, 1954; Taylor and Francis, London, 1992).
  4. D. V. Anosov, “Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 90, 3-210 (1967) [Proc. Steklov Inst. Math. 90, 1-235 (1967)].
  5. O. A. Ladyzhenskaya and V. A. Solonnikov, “On a Principle of Linearization and Invariant Manifolds for Problems of Magnetic Hydromechanics,” Zap. Nauch. Semin. Leningr. Otd. Mat. Inst. im. V.A. Steklova 38, 46-93, 1973.
    https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=znsl&paperid=2644&option_lang=eng . Cited April 5, 2023.
  6. A. B. Kalinina, “Numerical Realization of the Method of Functional-Analytic Series for Projecting on a Stable Manifold,” Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie) 7 (1), 61-68 (2006).
  7. A. A. Kornev, “Classification of Methods of Approximate Projection onto a Stable Manifolds,” Dokl. Akad. Nauk 400 (6), 736-738 (2005) [Dokl. Math. 71 (1), 124-126 (2005)].
  8. A. A. Kornev, “The Structure and Stabilization by Boundary Conditions of an Annular Flow of Kolmogorov Type,” Russ. J. Numer. Anal. Math. Model. 32 (4), 245-251 (2017).
    doi 10.1515/rnam-2017-0023.
  9. A. A. Kornev, “Simulating the Stabilization Process by Boundary Conditions of a Quasi-Two-Dimensional Flow with a Four-Vortex Structure,” Mat. Model. 29 (11), 99-110 (2017) [Math. Models Comput. Simul. 10 (3), 363-372 (2018)].
    doi 10.1134/S2070048218030079.
  10. A. A. Ivanchikov, A. A. Kornev, and A. V. Ozeritskii, “On a New Approach to Asymptotic Stabilization Problems,” Zh. Vychisl. Mat. Mat. Fiz. 49 (12), 2167-2181 (2009) [Comput. Math. Math. Phys. 49 (12), 2070-2084 (2009)].
    doi 10.1134/S0965542509120070.
  11. A. V. Fursikov and A. A. Kornev, “Feedback Stabilization for Navier-Stokes equations: Theory and Calculations,” in Mathematical Aspects of Fluid Mechanics. Lecture Notes Series (Cambridge University Press, Cambridge, 2012), Vol. 402, pp. 130-172.
  12. A. V. Ozeritsky, “Efficient Algorithms for Stable Manifolds,” Russ. J. Numer. Anal. Math. Model. 20 (2), 209-224 (2005).
    doi 10.1515/1569398054308667.
  13. A. A. Kornev, “A Problem of Asymptotic Stabilization by the Right-Hand Side,” Russ. J. Numer. Anal. Math. Model. 23 (4), 407-422 (2008).
    doi 10.1515/RJNAMM.2008.024.
  14. E. V. Chizhonkov, “Numerical Aspects of One Stabilization Method,” Russ. J. Numer. Anal. Math. Model. 18 (5), 363-376 (2003).
    doi 10.1515/rnam.2003.18.5.363.
  15. E. V. Chizhonkov and A. A. Ivanchikov, “On Numerical Stabilization of Solutions of Stokes and Navier-Stokes Equations by the Boundary Conditions,” Russ. J. Numer. Anal. Math. Model. 19 (6), 477-494 (2004).
    doi 10.1515/1569398042568716.
  16. A. A. Ivanchikov, “On Numerical Stabilization of Unstable Couette Flow by the Boundary Conditions,” Russ. J. Numer. Anal. Math. Model. 21 (6), 519-537 (2006).
    doi 10.1515/rnam.2006.21.6.519.



How to Cite

Калинина А.Б., Корнев А.А., Назаров В.С. On the Hybrid Projection Method to a Stable Manifold of a One-Dimensional Burgers-Type Equation // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2023. 24. 170-181. doi 10.26089/NumMet.v24r213



Methods and algorithms of computational mathematics and their applications