A comparison of algorithms for spiral tomography

Authors

  • V.V. Pickalov
  • A.V. Likhachev

Keywords:

спиральная томография
алгоритмы реконструкции
математическое моделирование

Abstract

The paper deals with the three-dimensional transmission tomography problem. The projection geometry with a source moving along a spiral is investigated. Three reconstruction algorithms are compared quantitatively. The main attention is paid to the comparison of the algorithms based on the equations of quasi-exact inversion with the approximate iterative method ART. The known algorithms are modified to be more stable with respect to noise. The recommendations how to choose an optimal algorithm for different projection schemes are proposed.


Published

2004-09-21

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

V.V. Pickalov

A.V. Likhachev


References

  1. Tuy H.K. An inversion formula for cone-beam reconstruction // SIAM J. Applied Mathematics. 1983. 43, N 3. 546-552.
  2. Defrise M., Kinahan P.E., Townsend D.W., Michel C., Sibomana M., Newport D.F. Exact and approximate rebinning algorithms for 3-D PET data // IEEE Trans. Med. Imag. 1997. 16, N 2. 145-158.
  3. Hu H. Multi-slice helical CT: Scan and reconstruction // Med. Phys. 1999. 26, N 1. 5-18.
  4. Noo F., Defrise M., Clackdoyle R. Single-slice rebinning method for helical cone-beam CT // Phys. Med. Biol. 1999. 44. 561-570.
  5. Defrise M., Noo F., Kudo H. Improved two-dimensional rebinning of helical cone-beam computerized tomography data Using John’s equation // Inverse Problems. 2003. 19. 41-54.
  6. Smith B.D. Cone-beam tomography: resent advances and tutorial review // J. Optical Engineering. 1990. 29, N 5. 524-534.
  7. Feldkamp L.A., Davis L.C., Kress J.W. Practical cone-beam algorithm // J. Opt. Soc. Am (A). 1984. 1, N 6. 612-619.
  8. Yan X., Leahy R.M. Cone beam tomography with circular, elliptical and spiral orbits // Phys. Med. Biol. 1992. 37, N 3. 493-506.
  9. Grangeat P. Mathematical framework of cone-beam 3D-reconstruction via the first derivative of the Radon transform // Proc. of a Conf. On Mathematical Methods in Tomography. Oberwolfach, Germany. 1990. 66-97.
  10. Tam K.C., Samarasekera S., Sauer F. Exact cone beam CT with spiral scan // Phys. Med. Biol. 1998. 43. 1015-1024.
  11. Kudo H., Noo F., Defrise M. Cone-beam filtred-backprojection algorithm for truncated helical data // Phys. Med. Biol. 1998. 43. 2885-2909.
  12. Defrise M., Noo F., Kudo H. A solution to the long-object problem in helical cone-beam tomography // Phys. Med. Biol. 2000. 45. 623-643.
  13. Katsevich A. Analysis of an exact inversion algorithm for spiral cone-beam CT // Phys. Med. Biol. 2002. 47. 2583-2598.
  14. Katsevich A. On two Versions of a 3pi algorithm for spiral CT // Phys. Med. Biol. 2004. 49. 2129-2143.
  15. Хермен Г.Т. Восстановление изображений по проекциям. Основы реконструктивной томографии. М.: Мир, 1983.
  16. Shepp L.A., Logan B.F. The Fourier reconstruction of a head section // IEEE Trans. Nucl. Sci. 1974. 21, N 3. 21-43.
  17. Наттерер Ф. Математические аспекты компьютерной томографии. М: Мир, 1990.
  18. Kak A.C., Slaney M. Principles of computerized tomographic imaging. New York: IEEE Press, 1988.
  19. Rangayyan R.M., Gordon R. Streak preventive image reconstruction with ART and adaptive filtering // IEEE Trans. Med. Imag. 1982. 1, N 3. 173-178.