On the numerical solution of one extended hyperbolic system





quasi-linear hyperbolic equations, extended system, breaking effect, gradient catastrophe, plasma oscillations, method of characteristics, Lagrangian variables, numerical modeling


Numerical simulation of the influence of an external constant magnetic field on plane relativistic plasma oscillations is carried out. For this purpose, an algorithm is constructed in Lagrangian variables based on an extended system of hyperbolic equations. An important property of the numerical method is the dependence of its accuracy only on the smoothness properties of the solution. In addition, control over the intersection of electronic trajectories is used to fix the moment of breaking of oscillations. Sufficient conditions for the existence and non-existence of a smooth solution of the problem in the first period are analytically obtained. It was found out that the external magnetic field cannot prevent the breaking of oscillations in principle, even for the case of an arbitrarily small initial deviation from the equilibrium position. Numerical experiments clearly illustrate the relativistic breaking of the upper hybrid oscillations. It is shown that an external magnetic field can both accelerate and slow down the breaking process depending on the choice of the initial condition for the transverse component of the electron pulse.

Author Biographies

Olga S. Rozanova

Evgenii V. Chizhonkov


  1. R. Courant and P. Lax, “On Nonlinear Partial Differential Equations with Two Independent Variables,” Commun. Pure Appl. Math. 2 (2-3), 255-273 (1949).
    doi 10.1002/cpa.3160020206.
  2. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Nauka, Moscow, 1978; Amer. Math. Soc., Providence, 1983).
  3. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; CRC Press, Boca Raton, 2001).
  4. E. V. Chizhonkov, Mathematical Aspects of Modelling Oscillations and Wake Waves in Plasma (Fizmatlit, Moscow, 2018; CRC Press, Boca Raton, 2019).
  5. V. P. Silin, Introduction to the Kinetic Theory of Gases (Nauka, Moscow, 1971) [in Russian].
  6. A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978; Springer, Berlin, 1984).
  7. R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic Press, New York, 1972).
  8. Ya. B. Zeldovich and A. D. Myshkis, Elements of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].
  9. O. S. Rozanova and E. V. Chizhonkov, “On the Existence of a Global Solution of a Hyperbolic Problem,” Dokl. Akad. Nauk 492 (1), 97-100 (2020) [Dokl. Math. 101 (3), 254-256 (2020)].
    doi 10.1134/S1064562420030163.
  10. O. S. Rozanova and E. V. Chizhonkov, “On the Conditions for the Breaking of Oscillations in a Cold Plasma,” Z. Angew. Math. Phys. (ZAMP) 72 (1), Article Number 13 (2021).
    doi 10.1007/s00033-020-01440-3.
  11. O. S. Rozanova and E. V. Chizhonkov, “Analytical and Numerical Solutions of One-Dimensional Cold Plasma Equations,” Zh. Vychisl. Mat. Mat. Fiz. 61 (9), 1508-1527 (2021) [Comput. Math. Math. Phys. 61 (9), 1485-1503 (2021)].
    doi 10.1134/S0965542521090141.
  12. E. V. Chizhonkov, M. I. Delova, and O. S. Rozanova, “High Precision Methods for Solving a System of Cold Plasma Equations Taking into Account Electron-Ion Collisions,” Russ. J. Numer. Anal. Math. Model. 36 (3), 139-155 (2021).
    doi 10.1515/rnam-2021-0012.
  13. O. S. Rozanova and E. V. Chizhonkov, “The Influence of an External Magnetic Field on Cold Plasma Oscillations,” Z. Angew. Math. Phys. (ZAMP) 73 (6), Article Number 249 (2022).
    doi 10.1007/s00033-022-01885-8.
  14. M. Karmakar, Ch. Maity, and N. Chakrabarti, “Wave-Breaking Amplitudes of Relativistic Upper-Hybrid Oscillations in a Cold Magnetized Plasma,” Phys. Plasmas 23 (6), Article Number 064503 (2016).
    doi 10.1063/1.4953607.
  15. C. Maity, Lagrangian Fluid Technique to Study Nonlinear Plasma Dynamics , PHD Thesis (Saha Institute of Nuclear Physics, Kolkata, 2013).
  16. O. S. Rozanova, “Study of Small Perturbations of a Stationary State in a Model of Upper Hybrid Plasma Oscillations,” Teor. Mat. Fiz. 211 (2), 319-332 (2022). [Theor. Math. Phys. 211 (2), 712-723 (2022)].
    doi 10.1134/S0040577922050117.
  17. C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics (Springer, Berlin, 2016). doi10.1007/978-3-662-49451-6.
  18. V. L. Ginsburg and A. A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1975) [in Russian].
  19. A. A. Frolov and E. V. Chizhonkov, “On the Breaking of a Slow Extraordinary Wave in a Cold Magnetoactive Plasma,” Mat. Model. 33 (6), 3-16 (2021) [Math. Models Comput. Simul. 14 (1), 1-9 (2022)].
    doi 10.1134/S2070048222010094.
  20. O. S. Rozanova and E. V. Chizhonkov, “Stabilization and Blowup in the Relativistic Model of Cold Collisional Plasma,” Z. Angew. Math. Phys. (ZAMP) 72 (5), Article Number 184 (2021).
    doi 10.1007/s00033-021-01615-6.
  21. J. M. Dawson, “Nonlinear Electron Oscillations in a Cold Plasma,” Phys. Rev. 113 (2), 383-387 (1959).
    doi 10.1103/PhysRev.113.383.
  22. D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software (Prentice-Hall, Englewood Cliffs, 1989).
  23. M. H. Schultz, Spline Analysis (Prentice-Hall, Englewood Cliffs, 1973).
  24. E. V. Chizhonkov, “On Second-Order Accuracy Schemes for Modeling of Plasma Oscillations,” Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie) 21 (1), 115-128 (2020).
    doi 10.26089/NumMet.v21r110.
  25. A. A. Frolov and E. V. Chizhonkov, “Influence of Electron Collisions on the Breaking of Plasma Oscillations,” Fiz. Plazmy 44 (4), 347-354 (2018). [Plasma Phys. Rep. 44 (4), 398-404 (2018)].
    doi 10.1134/S1063780X18040049.
  26. C. J. R. Sheppard, “Cylindrical Lenses -- Focusing and Imaging: a Review [Invited],” Appl. Opt. 52 (4), 538-545 (2013).
    doi 10.1364/AO.52.000538.
  27. A. A. Frolov and E. V. Chizhonkov, “On the Criteria of the Langmuir Oscillations Breaking in a Plasma,” Phys. Scr. 95 (6), Article Number 065604 (2020).
    doi 10.1088/1402-4896/ab85fe.



How to Cite

Розанова О.С., Чижонков Е.В. On the Numerical Solution of One Extended Hyperbolic System // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2023. 24. 213-230. doi 10.26089/NumMet.v24r216



Methods and algorithms of computational mathematics and their applications