Numerical simulation of atmospheric electricity problem with unknown ionosphere potential


  • Ivan G. Mileshin
  • Vasily M. Goloviznin
  • Mikhail M. Khapaev


global electric circuit
ionospheric potential
finite element method


The paper considers approaches to the numerical solution of the problem of the distribution of the electric potential in the framework of a two-dimensional model of the atmospheric section of the global electrical circuit. For this model, a nonstandard stationary elliptic boundary value problem with a nonclassical boundary condition is formulated. For the numerical solution of this problem, in order to study the possibility and efficiency of parallelization of calculations, two numerical algorithms based on the finite element method are used. The results of calculations for a model problem are presented, in which the features of the earth’s surface topography are not taken into account, a simple model of conductivity and currents is used.





Methods and algorithms of computational mathematics and their applications

Author Biographies

Ivan G. Mileshin

Vasily M. Goloviznin

Mikhail M. Khapaev


  1. F. Leblanc, K. L. Aplin, Y. Yair, et al. (Eds.), Planetary Atmospheric Electricity (Springer, New York, 2008).
    doi 10.1007/978-0-387-87664-1
  2. C. T. R. Wilson, “Investigations on Lighting Discharges and on the Electric Field of Thunderstorms,” Philos. Trans. Roy. Soc. Lon. A. 221, 73-115 (1921).
    doi 10.1098/rsta.1921.0003
  3. S. V. Anisimov, S. S. Bakastov, and E. A. Mareev, “Spatiotemporal Structures of Electric Field and Space Charge in the Surface Atmospheric Layer,” J. Geophys. Res. Atmos. 99 (D5), 10603-10610 (1994).
    doi 10.1029/93JD03519
  4. A. V. Kalinin and N. N. Slyunyaev, “Initial-Boundary Value Problems for the Equations of the Global Atmospheric Electric Circuit,” J. Math. Anal. App. 450 (1), 112-136 (2017).
    doi 10.1016/j.jmaa.2017.01.025
  5. N. N. Slyunyaev, E. A. Mareev, A. V. Kalinin, and A. A. Zhidkov, “Influence of Large-Scale Conductivity Inhomogeneities in the Atmosphere on the Global Electric Circuit,” J. Atmos. Sci. 71 (11), 4382-4396 (2014).
    doi 10.1175/JAS-D-14-0001.1
  6. A. A. Zhidkov and A. V. Kalinin, “Correctness of One Mathematical Problem of Atmospheric Electricity,” Vestn. Lobachevskii Univ. Nizhni Novgorod, No. 4, 123-129 (2009).
  7. J.-M. Jin, The Finite Element Method in Electromagnetics (Wiley, Hoboken, 2014).
  8. Eigen . Cited August 2, 2023.