DOI: https://doi.org/10.26089/NumMet.v24r427

MUSCL-scheme of the third order of accuracy on a non-uniform structured grid

Authors

  • Alena R. Kocharina
  • Denis V. Chirkov

Keywords:

MUSCL-scheme
high-order reconstruction
non-uniform mesh
structured mesh
finite volume method
Navier-Stokes equations

Abstract

An upwind finite volume scheme with third-order MUSCL-reconstruction at the cell interface is extended to non-uniform structured grids. The order of approximation of the original MUSCL-scheme with reconstruction using constant coefficients and the modified MUSCL-scheme with coefficients dependent on the grid steps is investigated for 1D nonlinear transport equation. It is shown that the order of approximation depends on the type of non-uniform grid. The cases of a grid with a constant clustering law and an arbitrary non-uniform grid are considered. It is shown analytically and numerically, that the non-uniform MUSCL-scheme with coefficients depending on the grid spacing has the third order of approximation on a non-uniform grid with a constant clustering law and the second order on an arbitrary grid. It is also shown that the MUSCL-scheme with constant coefficients does not approximate the original equation at all on an arbitrary non-uniform grid. Non-uniform MUSCL-reconstruction is introduced into the numerical algorithm for calculating incompressible fluid flows. Higher accuracy of the proposed scheme is demonstrated for a 2D problem of the flow around a circular cylinder and for a 3D fluid flow in a hydraulic turbine.


Published

2023-11-13

Issue

Section

Methods and algorithms of computational mathematics and their applications

Author Biographies

Alena R. Kocharina

Novosibirsk national research state university
Kutateladze Institute of Thermophysics of SB RAS
• Research Engineer

Denis V. Chirkov

Novosibirsk national research state university
Kutateladze Institute of Thermophysics of SB RAS
• Senior Researcher


References

  1. S. K. Godunov, “A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics,” Mat. Sb. (Novaya Seriya) 47(89) (3), 271-306 (1959).
  2. P. L. Roe, “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput. Phys. 43 (2), 357-372 (1981).
    doi 10.1016/0021-9991(81)90128-5
  3. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 2009).
    doi 10.1007/978-3-540-49834-6
  4. V. P. Kolgan, “Finite Difference Scheme for Calculating Two-Dimensional Discontinuous Solutions of Unsteady Gas Dynamics,” Uchen. Zap. TsAGI 6 (1), 9-14 (1975).
  5. B. van Leer, “Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov’s Method,” J. Comput. Phys. 32 (1), 101-136 (1979).
    doi 10.1016/0021-9991(79)90145-1
  6. H. Nishikawa, “The QUICK Scheme is a Third-Order Finite-Volume Scheme with Point-Valued Numerical Solutions,” Int. J. Numer. Meth. Fluids 93 (7), 2311-2338 (2021).
    doi 10.1002/fld.4975
  7. B. van Leer and H. Nishikawa, “Towards the Ultimate Understanding of MUSCL: Pitfalls in Achieving Third-Order Accuracy,” J. Comput. Phys. 446, Article Number 110640 (2021).
    doi 10.1016/j.jcp.2021.110640
  8. K. N. Volkov, “High-Resolution Difference Schemes of Flux Calculation and Their Application for Solution of Gas Dynamics Problems,” Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie) 6 (1), 146-167 (2005).
  9. S. G. Cherny, D. V. Chirkov, V. N. Lapin, et al., Numerical Modeling of Flows in Turbomachines (Nauka, Novosibirsk, 2006) [in Russian].
  10. T. J. Barth and D. C. Jespersen, “The Design and Application of Upwind Schemes on Unstructured Meshes,” AIAA Paper 89-0366 (1989).
    doi 10.2514/6.1989-366
  11. T. Buffard and S. Clain, “Monoslope and Multislope MUSCL Methods for Unstructured Meshes,” J. Comput. Phys. 229 (10), 3745-3776 (2010).
    doi 10.1016/j.jcp.2010.01.026
  12. J. Hou, F. Simons, and R. Hinkelmann, “Improved Total Variation Diminishing Schemes for Advection Simulation on Arbitrary Grids,” Int. J. Numer. Methods Fluids 70 (3), 359-382 (2012).
    doi 10.1002/fld.2700
  13. K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, et al., Difference Schemes in Gas Dynamics on Unstructured Grids (Fizmatlit, Moscow, 2015) [in Russian].
  14. C. Le Touze, A. Murrone, and H. Guillard, “Multislope MUSCL Method for General Unstructured Meshes,” J. Comput. Phys. 284, 389-418 (2015).
    doi 10.1016/j.jcp.2014.12.032
  15. C. Bruner and R. Walters, “Parallelization of the Euler Equations on Unstructured Grids,” AIAA Paper 97-1894 (1997).
    doi 10.2514/6.1997-1894
  16. M. S. Darwish and F. Moukalled, “TVD Schemes for Unstructured Grids,” Int. J. Heat Mass Transf. 46 (4), 599-611 (2003).
    doi 10.1016/S0017-9310(02)00330-7
  17. E. V. Kolesnik and E. M. Smirnov, “Testing of Various Schemes with Quasi-One-Dimensional Reconstruction of Gasdynamic Variables in the Case of Unstructured-Grid Calculations,” St. Petersb. State Polytech. Univ. J.: Phys. Math. 3 (3), 259-270 (2017).
    doi 10.1016/j.spjpm.2017.09.010.
  18. A. E. Lyutov, D. V. Chirkov, V. A. Skorospelov, et al., “Coupled Multipoint Shape Optimization of Runner and Draft Tube of Hydraulic Turbines,” J. Fluids Eng. 137 (11), Paper Number FE-14-1769 (2015).
    doi 10.1115/1.4030678
  19. W. K. Anderson, J. L. Thomas, and B. van Leer, “Comparison of Finite Volume Flux Vector Splittings for the Euler Equations,” AIAA J. 24 (9), 1453-1460 (1986).
    doi 10.2514/3.9465
  20. E. A. Veselova, R. V. Zhalnin, Yu. N. Deryugin, et al., “The Software LOGOS. Calculation Method for Viscous Compressible Gas Flows on a Block-Structured Meshes,” Modern Problems of Science and Education. Surgery. No. 2 (2014).
    https://science-education.ru/en/article/view?id=12601 . Cited October 28, 2023.
  21. M. de la Llave Plata, V. Couaillier, M.-C. Le Pape, et al., “elsA-Hybrid: an All-in-One Structured/Unstructured Solver for the Simulation of Internal and External Flows. Application to Turbomachinery,” Prog. Prop. Phys. 4, 417-444 (2013).
    doi 10.1051/eucass/201304417
  22. J. Wellner, “Comparison of Finite Volume High-Order Schemes for the Two-Dimensional Euler Equations,” in Proc. VII European Congress on Computational Methods in Applied Sciences and Engineering, Greece, Crete Island, June 5-10, 2016.
    https://www.eccomas2016.org/proceedings/pdf/9251.pdf . Cited October 28, 2023.
  23. C.-W. Shu, “High Order ENO and WENO Schemes for Computational Fluid Dynamics,” in Lecture Notes in Computational Science and Engineering (Springer, Berlin, 1999), Vol. 9, pp. 439-582.
    doi 10.1007/978-3-662-03882-6_5
  24. S. A. Zhdan, V. P. Ryabchenko, and V. M. Teshukov, Lectures on Hydrodynamics (Novosib. Gos. Univ., Novosibirsk, 2002) [in Russian].