MARPLE: software for multiphysics modelling in continuous media




3D hydrodynamics, high-performance computing, unstructured meshes, multi-scale physics, solid state models, MARPLE


The research code MARPLE was originally created to model high-speed dynamic processes caused by the action of high-intensity energy fluxes on matter. At present, it is a universal tool able to solve various continuum mechanics problems. The implemented physical models are the following: single-fluid two-temperature MHD model of plasma dynamics, including electron-ion energy exchange and generalized Ohm’s law; model of electrical and thermal conductivity taking into account the anisotropy in the magnetic field; radiative heat transfer: models pertinent to optically thin as well as optically thick media: techniques for taking into account radiative cooling losses, spectral multigroup diffusion transfer, laser radiation propagation etc.; model of multicomponent flow. The MARPLE code utilises modern computational technologies based on block structured and unstructured meshes. MARPLE works as MPI application for modern HPC systems. The paper presents examples of problems in plasma dynamics, magnetohydrodynamics, astrophysics, and solid thermomechanics solved by means of the MARPLE code.


  1. V. A. Gasilov, A. S. Boldarev, S. V. D’yachenko, et al., “Program Package MARPLE3D for Simulation of Pulsed Magnetically Driven Plasma Using High Performance Computing,” Matem. Mod. 24 (1), 55-87 (2012). . Cited September 1, 2023.
  2. A. S. Boldarev, V. A. Gasilov, O. G. Olkhovskaya, et al., “Object-Oriented Code MARPLE3D: Simulations of Radiative Hydrodynamic/MHD Effects at High-Performance Computer Systems,” in Proc. 6th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2012, Vienna, Austria, September 10-14, 2012. . Cited September 7, 2023.
  3. S. I. Braginsky, “Transport Phenomena in Plasma,” in Problems of Plasma Theory , Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963), Vol. 1, pp. 183-272 [in Russian].
  4. V. B. Baranov and K. V. Krasnobaev, Hydrodynamic Theory of Space Plasma (Nauka, Moscow, 1977) [in Russian].
  5. N. A. Bobrova and P. V. Sasorov, “MHD-Equations for Completely Ionized Plasma of Complex Composition,” Fiz. Plazmy 19 (6), 789-795 (1993).
  6. B. N. Chetverushkin, Mathematical Modeling of Problems in the Dynamics of a Radiating Gas (Nauka, Moscow, 1985) [in Russian].
  7. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of High-Temperature Plasma and Methods for Computing Rosseland Mean Free Paths and Equations of State (Fizmatlit, Moscow, 2000) [in Russian].
  8. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1967).
    doi 10.1016/B978-0-12-395672-9.X5001-2
  9. Yu. S. Sharova, S. I. Glazyrin, and V. A. Gasilov, “Study of the Influence of the Background Neutral Component on the Dynamics of the Envelope in Supernova Remnants,” Astron. Lett. 47 (11), 746-753 (2021).
    doi 10.1134/S1063773721110050
  10. Yu. S. Sharova, “MHD Simulation of the Supernova Remnant Dynamics Taking into Account the Neutral Plasma Component,” Mat. Model. 34 (1), 47-58 (2022) [Math. Models Comput. Simul. 14 (4), 654-661 (2022)].
    doi 10.1134/S2070048222040111
  11. D. R. Schultz, P. S. Krstic, T. G. Lee, and J. C. Raymond, “Momentum Transfer and Viscosity from Proton-Hydrogen Collisions Relevant to Shocks and Other Astrophysical Environments,” Astrophys. J. 678 (2), 950-960 (2008).
    doi 10.1086/533579
  12. Y. S. Sharova and D. S. Shidlovski, “Numerical Study of Radiatively Cooling Partially Ionized Plasma Expansion in Neutral Environment,” in Proc. 8th Int. Congress on Energy Fluxes and Radiation Effects, Tomsk, Russia, October 2-8, 2022 (TPU Publishing House, Tomsk, 2022), pp. 206-212.
    doi 10.56761/EFRE2022.S2-P-033502
  13. J. D. Huba, NRL Plasma Formulary (Naval Research Laboratory, Washington D.C., 2013). . Cited September 2, 2013.
  14. A. S. Boldarev, O. G. Olkhovskaya, V. V. Val’ko, and V. S. Solovyova, Thermodynamic Models of Gas Mixtures for Computational Fluid Dynamics , Preprint No. 54 (Keldysh Institute of Applied Mathematics, Moscow, 2021) [in Russian]. . Cited September 2, 2023.
  15. D. S. Boykov, O. G. Olkhovskaya, and V. A. Gasilov, “Coupled Simulation of Gasdynamic and Elastoplastic Phenomena in a Material under the Action of an Intensive Energy Flux,” Mat. Model. 33 (12), 82-102 (2021) [Math. Models Comput. Simul. 14 (4), 599-612 (2022)].
    doi 10.1134/S2070048222040044
  16. THERMOS: Software Package & Database., home . Cited September 2, 2023.
  17. P. V. Sasorov, N. A. Bobrova, and O. G. Olkhovskaya, The Two-Temperature Equations of Magnetic Hydrodynamics of the Plasma , Preprint No. 21 (Keldysh Institute of Applied Mathematics, Moscow, 2015) [in Russian]. . Cited September 2, 2023.
  18. V. V. Valko, V. A. Gasilov, N. O. Savenko, and V. S. Solovyova, “Simulation of an Air Shock Wave Using the Equations of State for the Jones-Wilkins-Lee Detonation Products,” Mat. Model. 34 (4), 3-22 (2022) [Math. Models Comput. Simul. 14 (6), 875-888 (2022)].
    doi 10.1134/S2070048222060163
  19. T. J. Barth and D. С. Jespersen, emphThe Design and Application of Upwind Schemes on Unstructured Meshes, AIAA Paper No. 89-0366 (1989).
  20. P. Batten, N. Clarke, C. Lambert, and D. M. Causon, “On the Choice of Wavespeeds for the HLLC Riemann Solver,” SIAM J. Sci. Comput. 18 (6), 1553-1570 (1997).
    doi 10.1137/S1064827593260140
  21. T. Miyoshi and K. Kusano, “A Multi-State HLL Approximate Riemann Solver for Ideal Magnetohydrodynamics,” J. Comput. Phys. 208 (1), 315-344 (2005).
    doi 10.1016/
  22. P. L. Roe, “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput. Phys. 135 (2), 250-258 (1997).
    doi 10.1006/jcph.1997.5705
  23. O. G. Olkhovskaya, Grid-Projection Schemes for Approximation of the Second Order Partial Differential Equations on Irregular Computational Meshes , Preprint No. 226 (Keldysh Institute of Applied Mathematics, Moscow, 2018) [in Russian]. . Cited September 2, 2023.
  24. O. Olkhovskaya, A. Kotelnikov, M. Yakobovsky, and V. Gasilov, “Parallel Ray Tracing Algorithm for Numerical Analysis in Radiative Media Physics,” in Advances in Parallel Computing (IOS Press, Amsterdam, 2021), Vol. 32, pp. 137-146.
    doi 10.3233/978-1-61499-843-3-137
  25. A. Kotelnikov, I. Tsygvintsev, M. Yakobovsky, and V. Gasilov, “Parallel Ray Tracing Algorithm for Numerical Analysis of Laser Radiation Absorption in a Plasma,” in Communications in Computer and Information Science (Springer, Cham, 2019), Vol. 1129, pp. 110-120.
    doi 10.1007/978-3-030-36592-9_10
  26. R. N. Shakirov, “C++ Class for Integers of Unlimited Range,” . Cited September 3, 2023.
  27. P. J. Frey and P.-L. George, Mesh Generation: Application to Finite Elements (ISTE Ltd and John Wiley & Sons, 2008).
  28. V. A. Gasilov, E. L. Kartasheva, and O. V. Fryazinov, “Discretization of Inhomogeneous Geometric Objects,” in Encyclopedia of Low-Temperature Plasmas (Yanus-K, Moscow, 2009), Vol. VIII-1, pp. 298-318.
  29. D. Boykov, S. Grigoriev, O. Olkhovskaya, and A. Boldarev, “Implementing a Mesh-Projection Schemes Using the Technology of Adaptive Mesh Refinement,” in Lecture Notes in Computer Science (Springer, Cham, 2020), Vol. 11958, pp. 576-583.
    doi 10.1007/978-3-030-41032-2_66
  30. Salome Platform -- The Open-Source Platform for Numerical Simulation. Cited September 3, 2023.
  31. ParaView -- Open-Source, Multi-Platform Data Analysis and Visualization Application. Cited September 3, 2023.
  32. AztecOO, Trilinos. . Cited September 3, 2023.
  33. M. A. Heroux, AztecOO User Guide (Sandia National Laboratories, Albuquerque, 2007). . Cited September 3, 2023.
  34. LAPACK -- Linear Algebra PACKage. . Cited June 13, 2023.
  35. Karypis Lab@UMN-CS&E. . Cited September 3, 2023.
  36. CMake. Cited September 3, 2023.
  37. N. Smirnova, Simulation multidimensionnelle de l’explosion d’une supernova par production de paires , Thèse de doctorat en Physique théorique (Université Grenoble Alpes, France, 2019). . Cited September 3, 2023.
  38. K. N. Mitrofanov, V. V. Aleksandrov, A. V. Branitski, et al., “Progress in Researching the Implosion of Nested Arrays of Mixed Composition and the Generation of Soft X-Ray Power Pulse,” Plasma Phys. Control. Fusion 64 (4), Article Identifier 045007 (2022).
    doi 10.1088/1361-6587/ac49f9
  39. V. V. Aleksandrov, A. V. Branitskii, G. S. Volkov, et al., “Dynamics of Heterogeneous Liners with Prolonged Plasma Creation,” Plasma Phys. Rep. 27 (2), 89-109 (2001).
    doi 10.1134/1.1348487
  40. A. Casner, G. Rigon, B. Albertazzi, et al., “Turbulent Hydrodynamics Experiments in High Energy Density Plasmas: Scientific Case and Preliminary Results of the TurboHEDP Project,” High Power Laser Sci. Eng. 6 (3), Article Number 03000e44 (2018).
    doi 10.1017/hpl.2018.34




How to Cite

Gasilov V.A., Boldarev A.S., Olkhovskaya O.G., Boykov D.S., Sharova Y.S., Savenko N.O., Kotelnikov A.M. MARPLE: Software for Multiphysics Modelling in Continuous Media // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2023. 24. 316-338. doi 10.26089/NumMet.v24r423



Methods and algorithms of computational mathematics and their applications