Algorithms for numerical modeling of high-frequency acoustic sounding processes in the ocean

Authors

DOI:

https://doi.org/10.26089/NumMet.v25r103

Keywords:

acoustic sounding, radiative transfer equation, inverse problem, scattering coefficient, function discontinuity surfaces

Abstract

In this paper, we present a kinetic model for sound propagation in a fluctuating marine environment based on an integro-differential radiative transfer equation. The paper formulates an inverse problem for the radiative transfer equation with a localized pulsed sound source to determine the discontinuity surfaces of the scattering coefficient from the known time-angular density flux distribution. We develop a numerical algorithm to solve the inverse problem, based on introducing a special indicator function that identifies the locations of the sought surfaces. Computer simulations of the probing process at frequencies from 100 to 600 kHz demonstrate the effectiveness of algorithm proposed in identifying the boundaries of inhomogeneities at long distances.

Author Biographies

Polina A. Vornovskikh

Institute of Applied Mathematics of FEB RAS
Far Eastern Federal University (FEFU)
• Research Engineer

Igor V. Prokhorov

Institute of Applied Mathematics of FEB RAS
• Chief Researcher

Ivan P. Yarovenko

Institute of Applied Mathematics of FEB RAS
• Senior Researcher

References

  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978; Mir, Moscow, 1981).
  2. G. Bal, “Kinetics of Scalar Wave Fields in Random Media,” Wave Motion. 43 (2), 132-157 (2005).
    doi 10.1016/j.wavemoti.2005.08.002
  3. A. S. Salomatin, V. I. Yusupov, O. F. Vereshchagina, and D. V. Chernykh, “An Acoustic Estimate of Methane Concentration in a Water Column in Regions of Methane Bubble Release,” Akust. Zh. 60 (6), 638-644 (2014). [Acoust. Phys. 60 (6), 671-677 (2014)].
    https://link.springer.com/article/10.1134/S1063771014050133 . Cited January 29, 2024.
  4. V. I. Yusupov, I. P. Semiletov, D. V. Chernykh, and A. S. Salomatin, “Active High-Frequency Acoustic Thermometry of Frozen Water-Saturated Media,” Akust. Zh. 68 (5), 501-509 (2022). [Acoust. Phys. 68 (5), 459-466 (2022)].
    doi 10.1134/S1063771022050128
  5. V. Yusupov, A. Salomatin, N. Shakhova, et al., “Echo Sounding for Remote Estimation of Seabed Temperatures on the Arctic Shelf,” Geosciences 12 (9), Article Number 315 (2022).
    doi 10.3390/geosciences12090315
  6. D. S. Anikonov, A. E. Kovtanyuk, and I. V. Prokhorov, Transport Equation and Tomography , in Inverse and Ill-Posed Problems Series , Vol. 30 (VSP, Utrecht, 2002).
  7. S. A. Tereshchenko, Methods of Computer Tomography (Fizmatlit, Moscow, 2004) [in Russian].
  8. G. Bal, “Inverse Transport Theory and Applications,” Inverse Probl. 25 (5), Article Identifier 053001 (2009).
    doi 10.1088/0266-5611/25/5/053001
  9. S. Acosta, “Time Reversal for Radiative Transport with Applications to Inverse and Control Problems,” Inverse Probl. 29 (8), Article Identifier 085014 (2013).
    doi 10.1088/0266-5611/29/8/085014
  10. C. Wang and T. Zhou, “A Hybrid Reconstruction Approach for Absorption Coefficient by Fluorescence Photoacoustic Tomography,” Inverse Probl. 35 (2), Article Identifier 025005 (2018).
    doi 10.1088/1361-6420/aaf073
  11. M. Bellassoued and Y. Boughanja, “An Inverse Problem for the Linear Boltzmann Equation with a Time-Dependent Coefficient,” Inverse Probl. 35 (8), Article Identifier 085003 (2019).
    doi 10.1088/1361-6420/ab159f
  12. Q. Li and W. Sun, “Applications of Kinetic Tools to Inverse Transport Problems,” Inverse Probl. 36 (3), Article Identifier 035011 (2020).
    doi 10.1088/1361-6420/ab59b8
  13. P. A. Vornovskikh, A. Kim, and I. V. Prokhorov, “The Applicability of the Approximation of Single Scattering in Pulsed Sensing of an Inhomogeneous Medium,” Comput. Res. Model. 12 (5), 1063-1079 (2020).
    doi 10.20537/2076-7633-2020-12-5-1063-1079
  14. P. A. Vornovskikh and I. V. Prokhorov, “Comparative Analysis of the Error of the Single Scattering Approximation when Solving One Inverse Problem in Two-Dimensional and Three-Dimensional Cases,” Dal’nevost. Mat. Zh. 21 (2), 151-165 (2021).
    doi 10.47910/FEMJ202113
  15. A. Faridani, E. L. Ritman, and K. T. Smith, “Local Tomography,” SIAM J. Appl. Math. 52 (2), 459-484 (1992).
    doi 10.1137/0152026
  16. A. Faridani, D. V. Finch, E. L. Ritman, and K. T. Smith, “Local Tomography II,” SIAM J. Appl. Math. 57 (4), 1095-1127 (1997).
    doi 10.1137/S0036139995286357
  17. E. T. Quinto, “Singularities of the X-Ray Transform and Limited Data Tomography in R2 and R3,” SIAM J. Math. Anal. 24 (5), 1215-1225 (1993).
    doi 10.1137/0524069
  18. A. G. Ramm and A. I. Katsevich, The Radon Transform and Local Tomography (CRC Press, Boca Raton, 1996).
  19. D. S. Anikonov, V. G. Nazarov, and I. V. Prokhorov, “Algorithm of Finding a Body Projection within an Absorbing and Scattering Medium,” J. Inverse Ill-Posed Probl. 18 (8), 885-893 (2011).
    doi 10.1515/JIIP.2011.009
  20. D. S. Anikonov, V. G. Nazarov, and I. V. Prokhorov, “An Integrodifferential Indicator for the Problem of Single Beam Tomography,” Sib. Zh. Ind. Mat. 17 (2), 3-10 (2014). [J. Appl. Ind. Math. 8 (3), 301-306 (2014)].
    doi 10.1134/S1990478914030016
  21. V. G. Romanov, “Recovering Jumps in X-Ray Tomography,” Sib. Zh. Ind. Mat. 17 (3), 98-110 (2014). [J. Appl. Ind. Math. 8 (4), 582-593 (2014)].
    doi 10.1134/S1990478914040164
  22. E. Yu. Derevtsov, S. V. Maltseva, and I. E. Svetov, “Determination of Discontinuities of a Function in a Domain with Refraction from Its Attenuated Ray Transform,” Sib. Zh. Ind. Mat. 21 (4), 51-74 (2018). [J. Appl. Ind. Math. 12 (4), 619-641 (2018)].
    doi 10.1134/S1990478918040038
  23. S. V. Maltseva, I. E. Svetov, and A. P. Polyakova, “Reconstruction of a Function and Its Singular Support in a Cylinder by Tomographic Data,” Eurasian J. Math. Comput. Appl. 8 (2), 86-97 (2020).
    doi 10.32523/2306-6172-2020-8-2-86-97
  24. I. P. Yarovenko, “The Method for Finding Activity Discontinues in Positron Emission Tomography,” Sib. Electron. Math. Izv. 13, 694-703 (2016)
    doi 10.17377/semi.2016.13.054
  25. V. I. Mendus and G. A. Postnov, “On Angular Intensity Distribution of High-Frequency Ambient Dynamic Noise of the Ocean,” Akust. Zh. 39 (6), 1107-1116 (1993).
  26. I. B. Andreeva and A. V. Belousov, “Applicability of the Single-Scattering Approximation to Problems of Acoustic Scattering from Clusters of Sea Creatures,” Akust. Zh. 42 (4), 560-562 (1996). [Acoust. Phys. 42 (4), 495-496 (1996)].
    https://acnpsearch.unibo.it/singlejournalindex/1941588 . Cited February 1, 2024.
  27. I. V. Prokhorov, V. V. Zolotarev, and I. B. Agafonov, “The Problem of Acoustic Sounding within Fluctuation Ocean,” Dal’nevost. Mat. Zh. 11 (1), 76-87 (2011).
  28. I. V. Prokhorov and A. A. Sushchenko, “Studying the Problem of Acoustic Sounding of the Seabed Using Methods of Radiative Transfer Theory,” Akust. Zh. 61 (3), 400-408 (2015). [Acoust. Phys. 61 (3), 368-375 (2015)].
    doi 10.1134/S1063771015020104
  29. G. A. Mikhailov and I. N. Medvedev, Optimization of Weighted Algorithms for Statistical Modeling (Omega Print, Novosibirsk, 2011) [in Russian].
  30. D. R. Jackson, APL-UW High-Frequency Ocean Environmental Acoustic Models Handbook , Technical Report TR 9407 (University of Washington, Seattle, 1994).

Published

09-02-2024

How to Cite

Ворновских П.А., Прохоров И.В., Яровенко И.П. Algorithms for Numerical Modeling of High-Frequency Acoustic Sounding Processes in the Ocean // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2024. 25. 19-32. doi 10.26089/NumMet.v25r103

Issue

Section

Methods and algorithms of computational mathematics and their applications