A method for refining the numerical solution to the problem of optimizing the kinematic scheme for forming panels


  • Konstantin S. Bormotin


finite element method
optimal control problem
dynamic programming method


When solving optimal control problems of the solids deformation according to the general scheme of the dynamic programming method, significant computing resources are required. To reduce the calculation time, it is proposed to refine the rough solution obtained using the dynamic programming scheme using the wandering tube method. Using the software implementation of this algorithm, numerical solutions for the optimal bending of the plate in creep mode were obtained, which were compared with analytical data.





Methods and algorithms of computational mathematics and their applications

Author Biography

Konstantin S. Bormotin


  1. V. A. Mikheev and S. V. Surudin, “Bases of Calculation Stretch Forming Process Thin Double-Convex Shells,” Izv. Samara Nauch. Tsentra Ross. Akad. Nauk 19 (1(3)), 555-562 (2017).
  2. D. Simon, L. Kern, J. Wagner, and G. Reinhart, “A Reconfigurable Tooling System for Producing Plastic Shields,” Procedia CIRP 17, 853-858 (2014).
  3. O. V. Sosnin, I. A. Shubin, B. V. Gorev, and G. A. Raevskaya, “Method of Forming Double Curvature Parts and Device for Its Implementation,” Inventor’s Certificate SU1147471A1. Patentee: Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences. Novosibirsk, 1985.
  4. K. S. Bormotin and A. A. Krivenok, “Numerical Optimization of the Kinematic Scheme of Multi-Point Forming of Panel in the Creep Mode,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 5, 150-163 (2022) [Mech. Solids 57 (5), 1086-1096 (2022)].
    doi 10.3103/S0025654422050156
  5. K. S. Bormotin, A. A. Burenin, and A. A. Krivenok, “On the Optimization of the Kinematic Scheme for Shaping Thin Elastoplastic Coverings,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 14-24 (2022) [Mech. Solids 57 (2), 214-222 (2022)].
    doi 10.3103/S0025654422020030
  6. F. P. Vasiliev, Optimization Methods (Faktorial Press, Moscow, 2002) [in Russian].
  7. N. N. Moiseev, Elements of the Theory of Optimal Systems (Nauka, Moscow, 1975) [in Russian].
  8. K. S. Bormotin and A. Win, “A Method of Dynamic Programming in the Problems of Optimal Panel Deformation in the Creep Mode,” Vychisl. Metody Program. (Numerical Methods and Programming). 19 (4), 470-478 (2018).
    doi 10.26089/NumMet.v19r442
  9. S. N. Korobeinikov, Nonlinear Deformation of Solid Bodies (Izd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].
  10. O. V. Sosnin, A. F. Nikitenko, and B. V. Gorev, “Justification of the Energy Variant of the Theory of Creep and Long-Term Strength of Metals,” Zh. Prikl. Mekh. Tekh. Fiz. 51 (4), 188-197 (2010) [J. Appl. Mech. Tech. Phys. 51 (4), 608-614 (2010)].
    doi 10.1007/s10808-010-0078-y
  11. K. S. Bormotin, “Iterative Method for Solving Geometrically Nonlinear Inverse Problems of Structural Element Shaping under Creep Conditions,” Zh. Vychisl. Mat. Mat. Fiz. 53 (12), 2091-2099 (2013) [Comput. Math. Math. Phys. 53 (12), 1908-1915 (2013)].
    doi 10.1134/S0965542513120026
  12. P. Wriggers, Computational Contact Mechanics (Springer, Berlin, 2006).
    doi 10.1007/978-3-540-32609-0
  13. Marc: Advanced Nonlinear Simulation Solution. . Cited May 10, 2024.
  14. S. N. Korobeinikov, A. I. Oleinikov, B. V. Gorev, and K. S. Bormotin, “Mathematical Simulation of Creep Processes in Metal Patterns Made of Materials with Different Extension Compression Properties,” Vychisl. Metody Program. (Numerical Methods and Programming). 9 (3), 346-365 (2008).
  15. O. V. Sosnin, B. V. Gorev, and V. V. Rubanov, “Torsion of a Square Plate in a Material with Differing Resistance to Creep in Tension and Compression,” in Raschety Prochn. Sudovykh Konstruktsii i Mekhanizmov (Siberian State University of Water Transport, Novosibirsk, 1976), Issue 117, pp. 78-88.
  16. I. Yu. Tsvelodub, Stability Postulate and Its Applications in the Theory of Creep of Metallic Materials (Institute of Hydrodynamics, Novosibirsk, 1991) [in Russian].
  17. K. S. Bormotin and A. I. Oleinikov, “Variational Principles and Optimal Solutions of the Inverse Problems of Creep Bending of Plates,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 136-146 (2012) [J. Appl. Mech. Tech. Phys. 53 (5), 751-760 (2012)].
    doi 10.1134/S0021894412050148
  18. A. W. Troelsen, Developer’s Workshop to COM and ATL 3.0 (Wordware Publ., Plano, 2000; BHV-Petersburg Publ., Petersburg, 2001).