DOI: https://doi.org/10.26089/NumMet.v25r107

Algorithms of solution correction for numerical simulation of the dynamics of elastic-plastic, granular and porous media

Authors

  • Vladimir M. Sadovskii
  • Oxana V. Sadovskaya

Keywords:

elastic-plastic flow
dynamics
Wilkins correction
variational inequality

Abstract

Based on the mathematical apparatus of variational inequalities, original corrective algorithms are developed for numerical solution of dynamic problems in the theory of elastic-plastic Prandtl–Reuss flow with an arbitrary plasticity condition. The method of splitting into physical processes is used. Similar algorithms are constructed to simulate the dynamics of a granular medium and a porous medium with open pores.


Published

2024-03-01

Issue

Section

Methods and algorithms of computational mathematics and their applications

Author Biographies

Vladimir M. Sadovskii

Oxana V. Sadovskaya


References

  1. M. L. Wilkins, “Calculation of Elastic-Plastic Flow,” in Methods in Computational Physics Vol. 3: Fundamental Methods in Hydrodynamics (Academic Press, New York, 1964; Mir, Moscow, 1967), pp. 211-263.
  2. M. L. Wilkins, Computer Simulation of Dynamic Phenomena , Ser.: Scientific Computation (Springer, Berlin, 1999).
    doi 10.1007/978-3-662-03885-7
  3. V. G. Bazhenov and V. L. Kotov, Mathematical Modeling of Non-Stationary Processes of Impact and Penetration of Axisymmetric Bodies and Identification of Properties of Ground Media (Fizmatlit, Moscow, 2011) [in Russian].
  4. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solving Many-Dimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].
  5. S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws (Springer, New York, 2003; Nauchnaya Kniga, Novosibirsk, 1998).
    doi 10.1007/978-1-4757-5117-8
  6. S. S. Grigorian, “On Basic Concepts in Soil Dynamics,” Prikl. Mat. Mekh. 24 (6), 1057-1072 (1960) [J. Appl. Math. Mech. 24 (6), 1604-1627 (1960).
    doi 10.1016/0021-8928(60)90013-7]
  7. S. S. Grigorian, “Some Problems of the Mathematical Theory of Deformation and Fracture of Hard Rocks,” Prikl. Mat. Mekh. 31 (4), 643-669 (1967) [J. Appl. Math. Mech. 31 (4), 665-686 (1967).
    doi 10.1016/0021-8928(67)90006-8]
  8. G. V. Ivanov, Yu. M. Volchkov, I. O. Bogulskii, et al., Numerical Solution of Dynamic Elastic-Plastic Problems of Deformable Solids (Sib. Univ. Izd., Novosibirsk, 2002) [in Russian].
  9. V. N. Kukudzhanov, Difference Methods for the Solution of Problems of Mechanics of Deformable Media (MFTI Press, Moscow, 1992) [in Russian].
  10. V. N. Kukudzhanov, Numerical Continuum Mechanics (Fizmatlit, Moscow, 2008; De Gruyter, Berlin, 2013).
    doi 10.1515/9783110273380
  11. L. A. Merzhievskii and A. D. Resnyanskii, “Shock-Wave Processes in Metals,” Fiz. Goreniya Vzryva 20 (5), 114-122 (1984) [Combust. Explos. Shock Waves 20 (5), 580-587 (1984).
    doi 10.1007/BF00782256]
  12. V. N. Nikolaevskii, A Collection of Writings. Geomechanics. Vol. 1: Fracture and Dilatancy, Oil and Gas (Inst. Komp’yut. Issled., Moscow-Izhevsk, 2010) [in Russian].
  13. T. M. Platova, Dynamic Problems of Mechanics of Deformable Media (Tomsk Gos. Univ., Tomsk, 1980) [in Russian].
  14. B. E. Pobedrya, Numerical Methods in the Theory of Elasticity and Plasticity (Mosk. Gos. Univ., Moscow, 1995) [in Russian].
  15. V. M. Fomin, Numerical Modeling of High-Velocity Interaction of Bodies (NSU Press, Novosibirsk, 1982) [in Russian].
  16. V. M. Fomin, A. I. Gulidov, G. A. Sapozhnikov, et al., High-Velocity Interaction of Bodies (Ross. Akad. Nauk, Novosibirsk, 1999) [in Russian].
  17. G. I. Kanel, V. E. Fortov, and S. V. Razorenov, Shock-Wave Phenomena and the Properties of Condensed Matter , Ser.: Shock Wave and High Pressure Phenomena (Springer, New York, 2004).
    doi 10.1007/978-1-4757-4282-4
  18. V. I. Kondaurov and V. E. Fortov, Fundamentals of Thermomechanics of Condensed Matter (MFTI Press, Moscow, 2002) [in Russian].
  19. V. I. Kondaurov, I. B. Petrov, and A. S. Kholodov, “Numerical Modeling of the Process of Penetration of a Rigid Body of Revolution into an Elastoplastic Barrier,” Zh. Prikl. Mekh. Tekh. Fiz. No. 4, 132-139 (1984) [J. Appl. Mech. Tech. Phys. 25 (4), 625-632 (1984).
    doi 10.1007/BF00910003]
  20. V. D. Ivanov, V. I. Kondaurov, I. B. Petrov, and A. S. Kholodov, “Calculation of Dynamic Deformation and Destruction of Elastic-Plastic Bodies by Grid-Characteristic Methods,” Mat. Model. 2 (11), 10-29 (1990).
  21. V. M. Sadovskii, Discontinuous Solutions in Dynamic Elastic-Plastic Problems (Nauka, Moscow, 1997) [in Russian].
  22. V. M. Sadovskii, “Thermodynamic Consistency and Mathematical Well-Posedness in the Theory of Elastoplastic, Granular, and Porous Materials,” Zh. Vychisl. Mat. Mat. Fiz. 60 (4), 738-751 (2020) [Comput. Math. Math. Phys. 60 (4), 723-736 (2020).
    doi 10.1134/S0965542520040156]
  23. K. Grossman and A. A. Kaplan, Nonlinear Programming on the Basis of Unconditional Minimization (Nauka, Novosibirsk, 1981) [in Russian].
  24. B. T. Polyak, Introduction to Optimization (Optimization Software, New York, 1987; Nauka, Moscow, 1983).
  25. O. Sadovskaya and V. Sadovskii, Mathematical Modeling in Mechanics of Granular Materials , in Advanced Structured Materials , Vol. 21 (Springer, Berlin, 2012; Fizmatlit, Moscow, 2008).
    doi 10.1007/978-3-642-29053-4
  26. E. M. Vikhtenko, G. Woo, and R. V. Namm, “On the Convergence of the Uzawa Method with a Modified Lagrangian Functional for Variational Inequalities in Mechanics,” Zh. Vychisl. Mat. Mat. Fiz. 50 (8), 1357-1366 (2010) [Comput. Math. Math. Phys. 50 (8), 1289-1298 (2010).
    doi 10.1134/S0965542510080026]
  27. A. V. Zhiltsov and R. V. Namm, “The Lagrange Multiplier Method in the Finite Convex Programming Problem,” Dal’nevost. Mat. Zh. 15 (1), 53-60 (2015).