DOI: https://doi.org/10.26089/NumMet.v25r106

One unconditionally stable CABARET class scheme for shallow water equations

Authors

  • Andrey V. Solovjev
  • Danil G. Asfandiyarov

Keywords:

implicit CABARET scheme
balance-characteristic method
transport equation
shallow water equations

Abstract

The paper considers a new approach to the construction of implicit unconditionally stable schemes within the framework of the CABARET balance-characteristic technique in relation to the system of shallow water equations. The method is based on the idea of inverting coordinate axes in the CABARET scheme to overcome the time step limitation. The system of equations is nonlinear, since the equations include minmax limiting operations based on the maximum principle for local Riemann invariants. This limitation significantly improves the dispersion properties of the numerical scheme. The nonlinear system of equations is solved using the marching order method. The paper presents the derivation of the numerical scheme for the Courant–Friedrichs–Lewy number CFL ≤ 1 and CFL > 1. Test calculations are presented on the simplest transport equation and one-dimensional shallow water problems for the subsonic case. Conclusions are drawn about the influence of nonlinear flux correction on the solution.


Published

2024-02-25

Issue

Section

Methods and algorithms of computational mathematics and their applications

Author Biographies

Andrey V. Solovjev

Lomonosov Moscow State University,
Faculty of Computational Mathematics and Cybernetics,
Laboratory of Industrial Mathematics
• Leading Researcher

Danil G. Asfandiyarov


References

  1. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; CRC Press, Boca Raton, 2001).
  2. V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, and I. A. Korotkin, New CFD Algorithms for Multiprocessor Computer Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].
  3. V. M. Goloviznin, D. Yu. Gorbachev, A. M. Kolokolnikov, et al., “Implicit and Time Reversible CABARET Schemes for Quasilinear Shallow Water Equations,” Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie) 17 (4), 402-414 (2016).
    doi 10.26089/NumMet.v17r437
  4. A. A. Samarskii and Yu. P. Popov, Difference Schemes for Solving Gas Dynamics Problems (Nauka, Moscow, 1992) [in Russian].
  5. V. M. Goloviznin and A. V. Solovjev, Dispersion and Dissipative Characteristics of Difference Schemes for Partial Differential Equations of Hyperbolic Type (MAKS Press, Moscow, 2018) [in Russian].
  6. J. Fernández-Pato, M. Morales-Hernández, and P. García-Navarro, “Implicit Finite Volume Simulation of 2D Shallow Water Flows in Flexible Meshes,” Comput. Methods Appl. Mech. Eng. 328. 1-25 (2018).
    doi 10.1016/j.cma.2017.08.050
  7. V. M. Goloviznin, S. A. Karabasov, and I. M. Kobrinskii, “Balance-Characteristic Schemes with Separated Conservative and Flux Variables,” Mat. Model. 15 (9). 29-48 (2003).
  8. V. M. Goloviznin and S. A. Karabasov, “Nonlinear Correction of Cabaret Scheme,” Mat. Model. 10 (12). 107-123 (1998).