Numerical aspects of the calculation of scaling factors from experimental data

Authors

  • I.V. Kolos
  • M.V. Kolos

Keywords:

краевые задачи
параболические уравнения
гиперболические уравнния
математическое моделирование
обобщенные функции
негативная норма

Abstract

New algorithms for finding molecular force field parameters expressed in terms of scaling factors are developed. A new formulation of the inverse vibrational problem (the so-called inverse scaling problem) is given and stable numerical methods are proposed. Examples include calculations of scaling factors for the molecules of methylsilane and perfluoroethane within different models.


Published

2004-10-07

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

I.V. Kolos

M.V. Kolos


References

  1. A.N. Tikhonov, A.S. Leonov, A.G. Yagola . Nonlinear ill-posed problems. London: Chapman & Hall, 1998 (Original Russian language edition: Nonlinear ill-posed problems. Moscow: Nauka, 1993).
  2. A.G. Yagola, I.V. Kochikov, G.M. Kuramshina, Yu.A. Pentin . Inverse problems of vibrational spectroscopy. Zeist (The Netherlands): VSP, 1999.
  3. G.M. Kuramshina, A.G. Yagola . A priori constraints in the force field calculations of polyatomic molecules // J. Struct. Chem. 1997. 38. 181-194.
  4. G.M. Kuramshina, F. Weinhold . Constraints on the values of force constants for molecular force field models based on ab initio calculations // J. Mol. Struct. 1997. 410, N 2. 457-462.
  5. G.M. Kuramshina, F.A. Weinhold, I.V. Kochikov, Yu.A. Pentin, A.G. Yagola . Joint treatment of ab initio and experimental data in molecular force field calculations with Tikhonov’s method of regularization // J. Chem. Phys. 1994. 100, N 2. 1414-1424.
  6. P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs, A. Vargha . Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (SQM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene // J. Am. Chem. Soc. 1983. 105. 7037-7047.
  7. T.I. Seidman, C.R. Vogel . Well-posedness and convergence of some regularization methods for nonlinear ill-posed problems // Inverse Problems. 1989. 5. 227-238.
  8. H.W. Engl, M. Hanke, A. Neubauer . Regularization of inverse problems. Dordrecht: Kluwer Academic Publishers, 1996.
  9. A.V. Stepanova, I.V. Kochikov, G.M. Kuramshina, A.G. Yagola . Regularizing scale factor method for molecular force field calculations // Computer Assistance for Chemical Research. International Symposium CACR-96. Moscow, 1996. 52.
  10. I.V. Kochikov, G.M. Kuramshina, A.V. Stepanova, A.G. Yagola . Regularizing scale factor method for molecular force field calculations // Moscow Univ. Bull. Ser. 3. Physics and Astronomy. 1997. 5. 21-25 (in Russian).
  11. I.V. Kochikov, Yu.I. Tarasov, V.P. Spiridonov, G.M. Kuramshina, A.G. Yagola, A.S. Saakyan, M.V. Popik, S. Samdal . Extension of a regularizing algorithm for the determination of equilibrium geometry and force field of free molecules from joint use of electron diffraction, molecular spectroscopy and ab initio data on systems with large-amplitude oscillatory motion // J. Mol. Struct. 1999. T. 485-486 . 421-443.
  12. I.V. Kochikov . Inverse problems of molecular structure and force field calculation on the basis of vibrational spectroscopy and electron diffraction experimental data // ISIP2001. International Symposium on Inverse Problems in Engineering Mechanics. 6-9 February 2001. Nagano City (Japan), 2001. 121-124.
  13. S. Kondo . Empirical improvement of the anharmonic ab initio force field of methyl fluoride // J. Chem. Phys. 1984. 81, N 12. 5945-5951.
  14. I.V. Kochikov, Yu.I. Tarasov, V.P. Spiridonov, G.M. Kuramshina, A.S. Saakyan, Yu.A. Pentin . The use of ab initio calculation results in electron diffraction studies of the equilibrium structure of molecules // Russian Journal of Physical Chemistry. 2001. 75, N 3. 395-400.
  15. I.V. Kochikov, Y.I. Tarasov, V.P. Spiridonov, G.M. Kuramshina, A.S. Saakyan, A.G. Yagola . The use of ab initio anharmonic force fields in experimental studies of equilibrium molecular geometry // J. Mol. Struct. 2000. T. 550-551 . 429-438.
  16. I.V. Kochikov, Yu.I. Tarasov, V.P. Spiridonov, G.M. Kuramshina, et al. The equilibrium structure of thiophene by the combined use of electron diffraction, vibrational spectroscopy and microwave spectroscopy guided by theoretical calculations // J. Mol. Struct. 2001. T. 567-568 . 29-40.
  17. M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Jonhson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Peterson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakhara, M. Chablacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogie, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Deflees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, J.A. Pople . Gaussian 94, Revision C2. Gaussian Inc. Pittsburgh, 1995.
  18. R.W. Kilb, L. Pieree . Microwave spectrum, structure and internal barrier of methylsilane // J. Chem. Phys. 1957. 27. 108-112.
  19. wref 19 R.E. Wilde . The infrared spectrum of CH_3SiH3 and CH_3SiD3 // J. Mol. Spectr. 1962. 8, N 6. 427-454.
  20. A.J.F. Clark, J.E. Drake . The vibrational spectra of germane and silane derivatives. Vibrational spectra and normal co-ordinate analysis of the methylsilanes // Can. J. Chem. 1977. 22, N 4. 79-83.
  21. S.V. Syn’ko, G.M. Kuramshina, A.I. L’vov, Yu.A. Pentin, G.S. Gol’din . Vibrational spectra of CH_ 3 SiH_ 2 D and CH_3SiHD2 // Moscow Univ. Bull. Ser. 2. Chemistry. 1983. 24, N 4. 360-364 (in Russian).
  22. K.L.Gallaher, A.Yokozeki, S.H.Bauer . Reinvestigation of the structure of perfluoroethane by electron diffraction // J. Phys. Chem. 1974. 78, N 23. 2389-2395.
  23. I.M.Mills, W.B.Person, J.R.Scherer, B.Crawford, Jr. Vibrational intensities. IX. C_2F_6: extension and revision // J. Chem. Phys. 1958. 28, N 5. 851-853.