DOI: https://doi.org/10.26089/NumMet.v25r324

New land use parameterization for INM-CM terrestrial carbon cycle module

Authors

  • Alexey Yu. Chernenkov
  • Evgeny M. Volodin

Keywords:

carbon cycle
land use
climate
Earth system modelling

Abstract

This paper presents a new version of the terrestrial carbon cycle module for the INM RAS Earth system model family (INM-CM). Its main difference from the previous one is a more detailed account of anthropogenic impacts on land ecosystems. This article describes a new land use database for INM-CM that takes into account changes in the spatial distribution of vegetation from 1850 to 2100. Harvesting in cultivated areas is also accommodated in the new version of the model. Numerical simulations are performed with the original and modified versions of the terrestrial carbon cycle module, covering both the historical period (1850–2014) and the possible future scenario (2015–2100). Estimates of the change in global land carbon stocks compared to the end of the pre-industrial period are obtained. The paper also proposes an effective way to prepare the initial state of carbon pools using the terrestrial carbon cycle module in stand-alone mode.


Downloads

Published

2024-09-10

Issue

Section

Methods and algorithms of computational mathematics and their applications

Author Biographies

Alexey Yu. Chernenkov

Evgeny M. Volodin


References

  1. V. P. Masson-Delmotte, A. Zhai, S. L. Pirani, et al., Climate Change 2021: The Physical Science Basis (Cambridge Univ. Press, Cambridge, 2021).
    doi 10.1017/9781009157896
  2. P. Friedlingstein, M. O’Sullivan, M. W. Jones, et al., “Global Carbon Budget 2023,” Earth Syst. Sci. Data, 15 (12), 5301-5369 (2023).
    doi 10.5194/essd-15-5301-2023
  3. P. J. Lawrence, J. J. Feddema, G. B. Bonan, et al., “Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change and Wood Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100,” J. Clim. 25 (9), 3071-3095 (2012).
    doi 10.1175/JCLI-D-11-00256.1
  4. D. M. Lawrence, G. C. Hurtt, A. Arneth, et al., “The Land Use Model Intercomparison Project (LUMIP) Contribution to CMIP6: Rationale and Experimental Design,” Geosci. Model Dev. 9 (9), 2973-2998 (2016).
    doi 10.5194/gmd-9-2973-2016
  5. V. Eyring, S. Bony, G. A. Meehl, et al., “Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization,” Geosci. Model Dev. 9 (5), 1937-1958 (2016).
    doi 10.5194/gmd-9-1937-2016
  6. G. C. Hurtt, L. Chini, R. Sahajpal, et al., “Harmonization of Global Land Use Change and Management for the Period 850-2100 (LUH2) for CMIP6,” Geosci. Model Dev. 13 (11) 5425-5464 (2020).
    doi 10.5194/gmd-13-5425-2020
  7. S. K. Liddicoat, A. J. Wiltshire, C. D. Jones, et al., “Compatible Fossil Fuel CO_2 Emissions in the CMIP6 Earth System Models’ Historical and Shared Socioeconomic Pathway Experiments of the Twenty-First Century,” J. Clim. 34 (8), 2853-2875 (2021).
    doi 10.1175/JCLI-D-19-0991.1
  8. E. M. Volodin, “Simulation of Present-Day Climate with the INMCM60 Model,” Izv. Atmos. Ocean. Phys. 59 (1), 16-22 (2023).
    doi 10.1134/s0001433823010139
  9. E. Volodin and V. Lykossov, “Parameterization of Heat and Moisture Transfer in the Soil-Vegetation System for Use in Atmospheric General Circulation Models:
  10. Formulation and Simulations Based on Local Observational Data,” Izv. Atmos. Ocean. Phys. 34 (4), 405-416 (1998).
  11. E. M. Volodin, “Atmosphere-Ocean General Circulation Model with the Carbon Cycle,” Izv. Atmos. Ocean. Phys. 43 (3), 266-280 (2007).
    doi 10.1134/s0001433807030024
  12. G. B. Bonan, “Land-Atmosphere Interactions for Climate System Models: Coupling Biophysical, Biogeochemical, and Ecosystem Dynamical Processes,” Remote Sens. Environ. 51 (1), 57-73 (1995).
    doi 10.1016/0034-4257(94)00065-U
  13. J. L. Dorman and P. J. Sellers, “A Global Climatology of Albedo, Roughness Length and Stomatal Resistance for Atmospheric General Circulation Models as Represented by the Simple Biosphere Model (SiB),” J. Appl. Meteorol. Climatol. 28 (9), 833-855 (1989).
    doi 10.1175/1520-0450(1989)028<0833: AGCOAR>2.0.CO;2
  14. M. F. Wilson and A. Henderson‐Sellers, “A Global Archive of Land Cover and Soils Data for Use in General Circulation Climate Models,” J. Climatol. 5 (2), 119-143 (1985).
    doi 10.1002/joc.3370050202
  15. B. C. O’Neill, C. Tebaldi, D. P. van Vuuren, et al., “The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6,” Geosci. Model Dev. 9 (9), 3461-3482 (2016).
    doi 10.5194/gmd-9-3461-2016
  16. M. Tarasevich, A. Sakhno, D. Blagodatskikh, et al., “Scalability of the INM RAS Earth System Model,” in Lecture Notes in Computer Science (Springer, Cham, 2024), Vol. 14388, pp. 202-216.
    doi 10.1007/978-3-031-49432-1_16