DOI: https://doi.org/10.26089/NumMet.v25r429

Numerical modeling of three-dimensional non-stationary problems of radiation magnetohydrodynamics

Authors

  • Alexander Yu. Krukovskiy
  • Yury A. Poveshchenko
  • Viktoriia O. Podryga
  • Parvin I. Rahimly

Keywords:

mathematical modeling
implicit fully conservative difference scheme
numerical algorithms
computational experiment
radiation magnetohydrodynamics
plasma

Abstract

This work presents a mathematical model for solving three-dimensional radiation problems of magnetohydrodynamics. An implicit fully conservative difference scheme is used to solve the system of differential equations. Two methods are used to solve the system of difference equations: the method of separate and the method of combined solution of equations, which are split by physical processes. A software implementation of the developed numerical algorithms is carried out, and calculations are performed modeling the compression of plasma by a magnetic field. The time dynamics of the parameters of matter and the magnetic field are studied. During the calculation process, at its various stages, both numerical methods used in the program are involved. The results obtained correspond to the physics of the process.


Published

2024-10-05

Issue

Section

Methods and algorithms of computational mathematics and their applications

Author Biographies

Alexander Yu. Krukovskiy

Yury A. Poveshchenko

Keldysh Institute of Applied Mathematics of RAS

• Professor, Leading Researcher

Viktoriia O. Podryga

Parvin I. Rahimly


References

  1. S. I. Braginskii, Problems of Plasma Theory, Vol. 1: Transport Phenomena in a Plasma (Atomizdat, Moscow, 1963)[in Russian].
  2. Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena(Nauka, Moscow, 1966) [in Russian].
  3. V. Ya. Goldin and B. N. Chetverushkin, “Methods for Solving One-Dimensional Problems of Radiation Gas Dynamics,” USSR Comput. Math. Math. Phys. 12 (4), 177-189 (1972).
    doi 10.1016/0041-5553(72)90122-X
  4. A. I. Morozov and L. S. Soloviev, “Steady-state plasma flows in a magnetic field,” in Reviews of Plasma Physics, Ed. by M. A. Leontovich(Atomizdat, Moscow, 1974), Vol. 8,  3-87 [in Russian].
  5. K. V. Brushlinskii and A. I. Morozov, “Calculation of two-dimensional plasma flows in channels,” in Reviews of Plasma Physics, Ed. by M. A. Leontovich(Atomizdat, Moscow, 1974), Vol. 8,  88-163 [in Russian].
  6. N. Krall and A. Trivelpiece, Principles of Plasma Physics(Mir, Moscow, 1975) [in Russian].
  7. V. B. Baranov and K. V. Krasnobaev, Hydrodynamic Theory of Cosmic Plasma(Nauka, Moscow, 1977) [in Russian].
  8. G. I. Marchuk and V. I. Lebedev, Numerical Methods in the Theory of Neutron Transport(Atomizdat, Moscow, 1981) [in Russian].
  9. V. Ya. Goldin, “On mathematical modeling of continuum problems with non-equilibrium transport,” in Modern Problems of Mathematical Physics and Computational Mathematics(Nauka, Moscow, 1982),  13-127 [in Russian].
  10. J. Duderstadt and G. Moses, Inertial Confinement Fusion(New York: John Wiley& Sons, 1982).
  11. B. N. Chetverushkin, Mathematical Modeling of Radiating Gas Dynamics Problems (Nauka, Moscow, 1985) [in Russian].
  12. V. Ya. Goldin, D. A. Goldina, A. V. Kolpakov, and A. V. Shilkov, “Mathematical Modeling of Gas-Dynamic Processes at High Radiation Energy Density,” VANT, Ser. Methods and Programs for Numerical Solution of Mathematical Physics Problems, Vol. 2, 59-66 (1986) [in Russian].
  13. K. V. Brushlinskii, Mathematical and Computational Problems of Magnetohydrodynamics(Binom. Laboratoriya Znanii, Moscow, 2009) [in Russian].
  14. A. A. Samarskii and Yu. P. Popov, Finite Difference Methods for Solving Problems of Gas Dynamics (Moscow: Nauka, 1992) [in Russian].
  15. S. T. Surzhikov, Computational Experiment in Constructing Radiation Models of Radiating Gas Mechanics (Nauka, Moscow, 1992) [in Russian].
  16. V. Ya. Goldin, “Methods for Calculating Neutron Transfer and Burning in a Thermonuclear Device (1948-1960),” in Science and Society: History of the Soviet Atomic Project (40-50s) (Dubna, 1999), 2, pp. 497-501 [in Russian].
  17. S. T. Surzhikov, “Radiative Heat Transfer in Low-Temperature Plasma,” ENTP 1, 417-462 (2000) [in Russian].
  18. V. A. Gasilov, A. S. Chuvatin, A. Yu. Krukovsky, E. L. Kartasheva, et al., “A program Package &quotRazryad&quot: Modeling of Plasma Acceleration in Pulsed-Power Systems,” Matem. Modeling. textbf 15 (9), 107-124 (2003) [in Russian].
  19. S. T. Surzhikov, Thermal Radiation of Gases and Plasma (Bauman Moscow State Technical University Publishing, Moscow, 2004) [in Russian].
  20. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, Radiation Magnetohydrodynamics: Analysis for Model Problems and Efficient 3d-Simulations for the Full System, in Analysis and Numerics for Conservation Laws, Ed. by G. Warnecke(Springer, Berlin, Heidelberg, 2005).
    doi 10.1007/3-540-27907-5_8
  21. A. N. Kozlov, “Investigation of rotating plasma flows based on a two-dimensional single-fluid MHD model,” KIAM Preprints, textbf 69, 27 p. (2005) [in Russian].
  22. V. A. Gasilov and S. V. Dyachenko, “Quasi-monotone two-dimensional MHD scheme for unstructured grids,” Math. Models Comput. Simul. 17 (12), 87-109 (2005) [in Russian].
  23. D. O. Ustyugov, V. I. Mazhukin, and S. D. Ustyugov, “Modeling of laser plasma in an external magnetic field,” in Proc. IV Int. Sci. Seminar, “Mathematical Models and Modeling in Laser-Plasma Processes’’, Moscow, Russia, 2007(Moscow Humanitarian University, Moscow, 2007) [in Russian].
  24. V. B. Baranov, “Gas dynamics and magnetohydrodynamics of the interaction between interplanetary and interstellar media. Theory and experiment,” Izv. Saratov Univ. Math. Mech. Inform. 8 (3), 18-25 (2008) [in Russian].
  25. A. I. Morozov, Introduction to Plasmadynamics(Fizmatlit, Moscow, 2008) [in Russian].
  26. K. V. Brushlinskii, Mathematical and Computational Problems of Magnetohydrodynamics(Binom. Laboratoriya Znanii, Moscow, 2009) [in Russian].
  27. E. N. Aristova, Modeling the Interaction of Radiation with Matter. Application of the Quasi-Diffusion Method (Lambert Academic Publishing, Saarbrucken, 2011) [in Russian].
  28. S. T. Surzhikov, Hypersonic Flow of Rarefied Gas around a Surface Glow Discharge with an External Magnetic Field (IPMech RAS, Moscow, 2011) [in Russian].
  29. V. V. Chebotarev, T. N. Cherednychenko, D. V. Eliseev, et al., “MHD characteristics of compression zone in plasma stream generated by MPC,” Probl. At. Sci. Technol. 6, 123-125 (2012).
  30. S. T. Surzhikov, Radiation Gas Dynamics of Descent Spacecraft. Multi-Temperature Models (IPMech RAS, Moscow, 2013) [in Russian].
  31. A. N. Kozlov and V. S. Konovalov, “3D Model of Radiation Transfer in Ionizing Gas and Plasma Flows,” KIAM Preprints, 86, 32 p. (2016).
    doi 10.20948/prepr-2016-86 [in Russian].
  32. V. A. Gasilov, A. Yu. Krukovskiy, and I. P. Tsygvintsev, “Stable Algorithm for Matching the Fluxes of Momentum and Kinetic Energy during Remeshing,” KIAM Preprints. textbf 48, 11 p. (2017)
    doi 10.20948/prepr-2017-48 [in Russian].
  33. N. Ya. Moiseev, “Modified Method of Splitting by Physical Processes for Solving Radiation Gas Dynamics Equations,” Comput. Math. Math. Phys. 57 (2), 301-313 (2017).
    doi 10.1134/S0965542517020117
  34. Y. Tsukamoto, S. Okuzumi, K. Iwasaki, M. N. Machida, and S. Inutsuka, “The impact of the Hall effect during cloud core collapse: implications for circumstellar disk evolution,” PAS. 69 (6), 95 (2017).
    doi 10.1093/pasj/psx113
  35. M. C. M. Cheung, M. Rempel, G. Chintzoglou, et al., A Comprehensive Three-Dimensional Radiative Magnetohydrodynamic Simulation of a Solar Flare(Nature Publishing Group, 2019).
    doi 10.1038/s41550-018-0629-3
  36. A. Yu. Krukovskiy, Yu. A. Poveshchenko, L. V. Klochkova, and D. V. Suzan, “Convergence Assessment of Iterative Algorithms for Solving Three-Dimensional Nonstationary Problems of Magnetohydrodynamics,” KIAM Preprints. 94, 17 p. (2019)
    doi 10.20948/prepr-2017-94 [in Russian].
  37. S. Jin, M. Tang, and X. Zhang, “A spatial-temporal asymptotic preserving scheme for radiation magnetohydrodynamics in the equilibrium and non-equilibrium diffusion limit,” J. Comput. Phys. 452, 110895 (2022).
    doi 10.1016/j.jcp.2021.110895
  38. A. Abbas, A. Khan, T. Abdeljawad, and M. Aslam, “Numerical simulation of variable density and magnetohydrodynamics effects on heat generating and dissipating Williamson Sakiadis flow in a porous space: Impact of solar radiation and Joule heating,” Heliyon. 9 (11), e21726 (2023).
    doi 10.1016/j.heliyon.2023.e21726
  39. V. M. Goloviznin, A. A. Samarskii, and A. P. Favorskii, “Variational approach to the construction of finite-difference models in hydrodynamics,” Dokl. Akad. Nauk SSSR 235 (6), 1285-1288 (1977) [in Russian].
  40. A. A. Samarskii and E. S. Nikolaev, Methods for Solving Grid Equations(Nauka, Moscow, 1978) [in Russian].
  41. A. A. Samarskii and A. V. Gulin, Numerical Methods(Nauka, Moscow, 1989) [in Russian].
  42. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of High-Temperature Plasma and Methods for Calculating Rosseland Mean Free Paths and Equations of State(Fizmatlit, Moscow, 2000) [in Russian].