DOI: https://doi.org/10.26089/NumMet.v25r431

Averaging of the model of a chemical process in a catalyst layer with a spherical grain

Authors

  • Olga S. Yazovtseva
  • Irek M. Gubaydullin
  • Igor G. Lapshin

Keywords:

numerical methods
mathematical modeling
explicit-implicit scheme
the diffusion-reaction equation
unsteady process

Abstract

The article presents a comparative analysis of models of a non-stationary chemical process using the example of burning coke sedimentation from a catalyst layer with a spherical grain. The first model is obtained by averaging the heat conductivity equation for a spherical catalyst grain. The second is the averaging of the entire grain model, including the diffusion-reaction equations. The comparative analysis showed good consistency of the results under conditions of low concentrations of reagents, small catalyst grains and high process temperatures with a significant reduction in calculation time for the first model. It was found necessary to take into account intradiffusion inhibition at the case of a high reagent concentrations. It causes the occurrence of a concentration gradient along the radius of the catalyst grain at the initial stages of the process.


Published

2024-10-22

Issue

Section

Methods and algorithms of computational mathematics and their applications

Author Biographies

Olga S. Yazovtseva

Irek M. Gubaydullin

Igor G. Lapshin


References

  1. G. K. Boreskov and M. G. Slin’ko, “Design of a Contact Apparatus for Sulfurous Gas Oxidation,” J. Chem. Ind. 13 (4), 221-225 (1936).
  2. A. A. Samarskii, Introduction to the Theory of Difference Schemes (Nauka, Moscow, 1971) [in Russian].
  3. O. A. Malinovskaya, V. S. Beskov, and M. G. Slin’ko, Modeling of Catalytic Processes on Porous Granules (Nauka, Novosibirsk, 1975) [in Russian].
  4. M. G. Slin’ko and V. S. Sheplev, “Modeling of Catalytic Processes in a Fluidized Bed,” Kinet. Catal. 11 (2), 531-540 (1970).
  5. E. A. Lashina, E. E. Peskova, and V. N. Snytnikov, “Mathematical Modeling of the Homogeneous-Heterogeneous Non-Oxidative CH_4 Conversion: The Role of Gas-Phase H or CH_3,” Reac. Kinet. Mech. Catal. 136 (4), 1775-1789 (2023).
    doi 10.1007/s11144-023-02442-8.
  6. K. F. Koledina, I. M. Gubaidullin, Sh. G. Zagidullin, et al., “Kinetic Regularities of Hydrogenation of Polycyclic Aromatic Hydrocarbons on Nickel Catalysts,” Russ. J. Phys. Chem. A. 97 (10), 2104-2110 (2023).
    doi 10.1134/S003602442309008X.
  7. A. Zagoruiko and P. Mikenin, “Modelling of the Cyclic Chemisorption-Catalytic Process for Production of Elemental Sulfur and Hydrogen from Hydrogen Sulfide,” Chem. Eng. Process.: Process Intensif. 181, Article Number 109169 (2022).
    doi 10.1016/j.cep.2022.109169.
  8. R. M. Masagutov, B. F. Morozov, and B. I. Kutepov, Regeneration of Catalysts in Oil Processing and Petrochemistry (Khimiya, Moscow, 1987) [in Russian].
  9. S. I. Reshetnikov, R. V. Petrov, S. V. Zazhigalov, and A. N. Zagoruiko, “Mathematical Modeling of Regeneration of Coked Cr-Mg Catalyst in Fixed Bed Reactors,” Chem. Eng. J. 380, Article Number 122374 (2020).
    doi 10.1016/j.cej.2019.122374.
  10. V. A. Hrisonidi and V. R. Basmanova, “Modern Methods of Regeneration of Catalysts Used in Oil and Gas Synthesis,” The Scientific Heritage. 50 (3), 41-44 (2020).
    https://www.elibrary.ru/item.asp?id=43916691 . Cited October 12, 2024.
  11. I. M. Gubaydullin, Mathematical Modelling of Dynamic Modes of Oxidative Regeneration of Catalysts in Motionless Layer (Institute of Petrochemisty and Catalysis, Ufa, 1996) [in Russian].
  12. Ya. B. Zel’dovich and D. A. Frank-Kamenetsky, “A Theory of Thermal Propagation of Flame,” Phys. Chem. 12 (1), 100-105 (1938).
  13. O. V. Kiselev and Yu. Sh. Matros, “Propagation of the Combustion Front of a Gas Mixture in a Granular Bed of Catalyst,” Fiz. Goreniya Vzryva 16 (2), 25-30 (1980) [Combust. Explos. Shock Waves. 16 (2), 152-157 (1980)].
    doi 10.1007/bf00740193.
  14. A. P. Gerasev, “Non-equilibrium Thermodynamics of Fast Traveling Waves in a Catalytic Fixed Bed. Emergence of Near-equilibrium Spatiotemporal Dissipative Structure,” J. Non-Equilib. Thermodyn. 43 (3), 221-235 (2018).
    doi 10.1515/jnet-2018-0005.
  15. A. N. Zagoruiko and A. G. Okunev, “Sorption-Enhanced Steam Reforming of Hydrocarbons with Autothermal Sorbent Regeneration in a Moving Heat Wave of a Catalytic Combustion Reaction,” React. Kinet. Catal. Lett. 91, 315-324 (2007).
    doi 10.1007/s11144-007-5168-3.
  16. V. E. Borisov and S. E. Yakush, Numerical Simulation of Methane Flame Propagation in a Gap between Parallel Plates , Preprint No. 4 (Keldysh Institute of Applied Mathematics, Moscow, 2019) [in Russian].
    doi 10.20948/prepr-2019-4.
  17. S. Yakush, O. Semenov, and M. Alexeev, “Premixed Propane–Air Flame Propagation in a Narrow Channel with Obstacles,” Energies. 16 (3), 1516-1-1516-19 (2023).
    doi 10.3390/en16031516.
  18. I. M. Gubaydullin, E. E. Peskova, O. S. Yazovtseva, and A. N. Zagoruiko, “Numerical Simulation of Oxidative Regeneration of a Spherical Catalyst Grain,” Mat. Model. 34 (11), 48-66 (2022) [Math. Models Comput. Simul. 15 (3), 485-495 (2023)].
    doi 10.1134/S2070048223030079.
  19. R. Hughes, Deactivation of Catalysts (Academic Press, New York, 1984).
  20. V. V. Kafarov, Fundamentals of Mass Transfer (Vysshaya Shkola, Moscow, 1972) [in Russian].
  21. O. S. Yazovtseva, I. M. Gubaydullin, E. E. Peskova, et al., “Computer Simulation of Coke Sediments Burning from the Whole Cylindrical Catalyst Grain,” Mathematics. 11 (3), 669-1-669-15 (2023).
    doi 10.3390/math11030669.