On the possibility of using the NNQS for the Klein–Gordon–Fock equation
Authors
-
Aleksandr M. Kalitenko
-
Petr I. Pronin
Keywords:
quantum mechanics
neural network
Klein–Gordon–Fock equation
Abstract
In this article, we present a method for finding quantum stationary states of the Klein–Gordon–Fock (KGF) equation using neural networks (NNs). The method has been tested on two well-known systems: a relativistic spinless particle in a Coulomb potential, and a one-dimensional relativistic harmonic oscillator. The results of training the neural network for these two systems are presented, as well as the analysis of the training process. The neural network method shows a good agreement with analytical calculations (if they can be found explicitly), providing a promising approach for solving more complex problems in quantum physics and quantum chemistry.
Section
Methods and algorithms of computational mathematics and their applications
References
- J. W. T. Keeble and A. Rios, “Machine Learning the Deuteron,” Phys. Lett. B 809, Article Number 135743 (2020).
doi 10.1016/j.physletb.2020.135743
- Z. Liu, P. O. Sturm, S. Bharadwaj, et al., “Interpretable Conservation Laws as Sparse Invariants,” Phys. Rev. E 109, Article Number L023301 (2024).
doi 10.1103/PhysRevE.109.L023301
- A. M. Kalitenko, “Phenomenological Model of a Free-Electron Laser Using Machine Learning,” Phys. Scr. 98 (10), Article Number 106003 (2023).
doi 10.1088/1402-4896/acf814
- A. M. Aleshin, V. V. Nikitin, and P. I. Pronin, “Measurement Procedure in the de Broglie-Bohm Theory,” Memoirs of the Faculty of Phys. N 4, Article Number 2341511 (2023).
- A. M. Kalitenko, “Three-Dimensional, Time-Dependent Simulation of Tapered EUV FELs with Phase Shifters,” Phys. Scr. 99 (4), Article Number 045514 (2024).
doi 10.1088/1402-4896/ad2f8d
- G. Carleo and M. Troyer, “Solving the Quantum Many-Body Problem with Artificial Neural Networks,” Science 355 (6325), 602-606 (2017).
doi 10.1126/science.aag2302
- R. G. Melko, G. Carleo, J. Carrasquilla, and J. I. Cirac, “Restricted Boltzmann Machines in Quantum Physics,” Nat. Phys. 15, 887-892 (2019).
doi 10.1038/s41567-019-0545-1
- G. Passetti, D. Hofmann, P. Neitemeier, et al., “Can Neural Quantum States Learn Volume-Law Ground States?’’ Phys. Rev. Lett. 131, Article Number 036502 (2023).
doi 10.1103/PhysRevLett.131.036502
- M. Reh, M. Schmitt, and M. Gärttner, “Optimizing Design Choices for Neural Quantum States,” Phys. Rev. B 107, Article Number 195115 (2023).
doi 10.1103/PhysRevB.107.195115
- D. Luo and J. Halverson, “Infinite Neural Network Quantum States: Entanglement and Training Dynamics,” Mach. Learn.: Sci. Technol. 4 (2), Article Number 025038 (2023).
doi 10.1088/2632-2153/ace02f
- Y. Zhu, Y.-D. Wu, G. Bai, et al., “Flexible Learning of Quantum States with Generative Query Neural Networks,” Nat. Commun. 13, Article Number 6222 (2022).
doi 10.1038/s41467-022-33928-z
- J. Hermann, Z. Schätzle, and F. Noé, “Deep-Neural-Network Solution of the Electronic Schrödinger Equation,” Nat. Chem. 12, 891-897 (2020).
doi 10.1038/s41557-020-0544-y
- J. R. Sarmiento, J. W. T. Keeble, and A. Rios, “Machine Learning the Deuteron: New Architectures and Uncertainty Quantification,” Eur. Phys. J. Plus 139, Article Number 189 (2024).
doi 10.1140/epjp/s13360-024-04983-w
- A. Radu and C. A. Duque, “Neural Network Approaches for Solving Schrödinger Equation in Arbitrary Quantum Wells,” Sci. Rep. 12, Article Number 2535 (2022).
doi 10.1038/s41598-022-06442-x
- J. M. Martyn, Kh. Najafi, and D. Luo, “Variational Neural-Network Ansatz for Continuum Quantum Field Theory,” Phys. Rev. Lett. 131 (8), Article Number 081601 (2023).
doi 10.1103/PhysRevLett.131.081601
- D. J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, Upper Saddle River, 1995).
- J. Han, L. Zhang, and E. Weinan, “Solving Many-Electron Schrödinger Equation Using Deep Neural Networks,” J. Comput. Phys. 399, Article Number 108929 (2019).
doi 10.1016/j.jcp.2019.108929
- W. Gordon, “Der Comptoneffekt nach der Schrödingerschen Theorie,” Z. Physik 40, 117-133 (1926).
doi 10.1007/BF01390840
- O. Klein, “Quantentheorie und fünfdimensionale Relativit854tstheorie,” Z. Physik 37, 895-906 (1926).
doi 10.1007/BF01397481
- V. Fock, “Über die invariante Form der Wellen- und der Bewegungsgleichungen für einen geladenen Massenpunkt,” Z. Physik 39, 226-232 (1926).
doi 10.1007/BF01321989
- D. Baye, “Klein-Gordon Equation on a Lagrange Mesh,” Phys. Rev. E 109, Article Number 045303 (2024).
doi 10.1103/PhysRevE.109.045303
- Y. Qian, Y. Zhang, Yu. Huang, and S. Dong, “Physics-Informed Neural Networks for approximating Dynamic (Hyperbolic) PDEs of Second Order in Time: Error Analysis and Algorithms,” J. Comput. Phys. 495, Article Number 112527 (2023).
doi 10.1016/j.jcp.2023.112527
- F. J. Dyson, Lectures on Advanced Quantum Mechanics.
https://arxiv.org/abs/quant-ph/0608140 . Cited November 3, 2024.
- R. L. Hall and M. D. Aliyu, “Comparison Theorems for the Klein-Gordon Equation in d Dimensions,” Phys. Rev. A 78, Article Number 052115 (2008).
doi 10.1103/PhysRevA.78.052115
- T. Shivalingaswamy and B. A. Kagali, “Rayleigh-Ritz Variational Method for Spin-Less Relativistic Particles,” Int. J. Sci. Res. 3 (8), 634-638 (2014).
https://www.ijsr.net/archive/v3i8/MDIwMTU0MjY=.pdf . Cited November 3, 2024.
- V. V. Kisilev, Quantum Mechanics (Mosk. Tsentr Nepreryv. Matem. Obraz., Moscow, 2009) [in Russian].
- A. N. Tikhonov, “Solution of Incorrectly Formulated Problems and the Regularization Method,” Sov. Math. Dokl. 4 (4), 1035-1038 (1963).
- A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Kluwer, Dordrecht, 1995).
- I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,”
https://arxiv.org/pdf/1711.05101 . Cited November 3, 2024.
- A. S. Davydov (Ed.), Quantum Mechanics (Second Edition), pp. 185-206 (Pergamon, New York, 1976; Nauka, Moscow, 1973).
doi 10.1016/B978-0-08-020438-3.50013-6
doi 10.1016/B978-0-08-020438-3.50003-3
- S. Flügge, Practical Quantum Mechanics (Springer, Berlin, 1994).
- X. Chang, E. O. Dobrolyubov, and S. V. Krasnoshchekov, “Fundamental Studies of Vibrational Resonance Phenomena by Multivalued Resummation of the Divergent Rayleigh-Schrödinger Perturbation Theory Series: Deciphering Polyad Structures of Three H_2^16O Isotopologues,” Phys. Chem. Chem. Phys. 24 (11), 6655-6675 (2022).
doi 10.1039/D1CP04279C