DOI: https://doi.org/10.26089/NumMet.v25r432

On numerical simulation of plasma oscillations taking into account non-standard viscosity

Authors

  • Olga S. Rozanova
  • Evgenii V. Chizhonkov

Keywords:

numerical simulation
non-relativistic oscillations
non-standard viscosity
implicit McCormack scheme
traveling waves

Abstract

The effect of non-standard viscosity on non-relativistic oscillations of cold plasma is numerically analyzed. The non-standard viscosity can be interpreted as a consequence of low electron heating when using the barotropic model. An implicit McCormack-type difference scheme has been constructed for calculations, which has a weaker stability constraint than the explicit scheme and is implemented without iterations, which increases its computational efficiency tenfold. It is shown that taking into account the non-standard viscosity of the plasma can be the reason for the formation of traveling waves of the soliton type.


Published

2024-10-27

Issue

Section

Methods and algorithms of computational mathematics and their applications

Author Biographies

Olga S. Rozanova

Evgenii V. Chizhonkov


References

  1. S. I. Braginskii, “Transfer Phenomena in Plasma,” in Problems in the Theory of Plasma (Gosatomizdat, Moscow, 1963), Vol. 1, pp. 183-285 [in Russian].
  2. A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978; Springer, Berlin, 1984).
  3. V. L. Ginsburg and A. A. Rukhadze, Waves in Magnetoactive Plasma(Nauka, Moscow, 1975) [in Russian].
  4. V. P. Silin, Introduction to the Kinetic Theory of Gases(Nauka, Moscow, 1971) [in Russian].
  5. V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-Like Media(Librokom, Moscow, 2012) [in Russian].
  6. E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of Laser-Driven Plasma-Based Electron Accelerators,” Rev. Mod. Phys. 81 (3), 1229-1285 (2009).
    doi 10.1103/RevModPhys.81.1229
  7. S. V. Bulanov, T. Zh. Esirkepov, Y. Hayashi, et al., “On Some Theoretical Problems of Laser Wake-Field Accelerators,” J. Plasma Phys. 82 (3), Article Number 905820308 (2016).
    doi 10.1017/S0022377816000623
  8. L. M. Gorbunov, “Why Do We Need Super-Powerful Laser Pulses?’’ Priroda 21 (4), 11-20 (2007).
  9. E. V. Chizhonkov, Mathematical Aspects of Modelling Oscillations and Wake Waves in Plasma(Fizmatlit, Moscow, 2018; CRC Press, Boca Raton, 2019).
  10. A. A. Skorupski and E. Infeld, “Nonlinear Electron Oscillations in a Viscous and Resistive Plasma,” Phys. Rev. E. 81 (5), Article Number 056406 (2010).
    doi 10.1103/PhysRevE.81.056406
  11. E. V. Chizhonkov and A. A. Frolov, “Effect of Electron Temperature on Formation of Travelling Waves in Plasma: Kinetic and Hydrodynamic Models,” Rus. J. Numer. Anal. Math. Model. 38 (2), 63-74 (2023).
    doi 10.1515/rnam-2023-0006
  12. O. Rozanova, E. Chizhonkov, and M. Delova, “Exact Thresholds in the Dynamics of Cold Plasma with Electron-Ion Collisions,” AIP Conf. Proc. 2302, Article Number 060012 (2020).
    doi 10.1063/5.0033619
  13. E. V. Chizhonkov, M. I. Delova, and O. S. Rozanova, “High Precision Methods for Solving a System of Cold Plasma Equations Taking into Account Electron-Ion Collisions,” Rus. J. Numer. Anal. Math. Model. 36 (3), 139-155 (2021).
    doi 10.1515/rnam-2021-0012
  14. E. V. Chizhonkov, “Numerical Modeling of Oscillations in a Cold but Viscous Plasma,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh. No. 4, 32-41 (2024) [Moscow Univ. Math. Bull. 79 (4), 182-191 (2024)].
    doi 10.3103/S0027132224700244
  15. A. G. Kulikovskii, N. V. Pogorelov, and A. Y. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems(Fizmatlit, Moscow, 2001; CRC Press, Boca Raton, 2001).
  16. R. W. MacCormack, “A Numerical Method for Solving the Equations of Compressible Viscous Flow,” AIAA J. 1982. 20 (9), 1275-1281 (1982).
  17. R. C. Davidson, Methods in Nonlinear Plasma Theory(Academic Press, New York, 1972).
  18. O. S. Rozanova and E. V. Chizhonkov, “On the Existence of a Global Solution of a Hyperbolic Problem,” Dokl. Akad. Nauk 492 (1), 97-100 (2020) [Dokl. Math. 101 (3), 254-256 (2020)].
    doi 10.1134/S1064562420030163
  19. O. S. Rozanova and E. V. Chizhonkov, “On the Conditions for the Breaking of Oscillations in a Cold Plasma,” Z. Angew. Math. Phys. 72 (1), Article Number 13 (2021).
    doi 10.1007/s00033-020-01440-3
  20. O. S. Rozanova and E. V. Chizhonkov, “Analytical and Numerical Solutions of One-Dimensional Cold Plasma Equations,” Zh. Vychisl. Mat. Mat. Fiz. 61 (9), 1508-1527 (2021) [Comput. Math. Math. Phys. 61 (9), 1485-1503 (2021)].
    doi 10.1134/S0965542521090141
  21. C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics(Springer, Berlin, 2016).
  22. C. J. R. Sheppard, “Cylindrical Lenses -- Focusing and Imaging: A Review [Invited],” Appl. Opt. 52 (4), 538-545 (2013).
    doi 10.1364/AO.52.000538
  23. Yu. I. Shokin and N. N. Yanenko, The Method of Differential Approximation. Application to Gas Dynamics(Nauka, Novosibirsk, 1985) [in Russian].
  24. J. Fürst and P. Furmánek, “An Implicit MacCormack Scheme for Unsteady Flow Calculations,” Comput. Fluids 46 (1), 231-236 (2011).
    doi 10.1016/j.compfluid.2010.09.036
  25. A. A. Frolov and E. V. Chizhonkov, “On the Numerical Simulation of Traveling Langmuir Waves in Warm Plasma,” Mat. Model. 35 (11), 21-34 (2023) [Math. Models Comput. Simul. 16 (2), 169-176 (2024)].
    doi 10.1134/S207004822402008X
  26. A. A. Frolov and E. V. Chizhonkov, “Application of the Energy Conservation Law in the Cold Plasma Model,” Zh. Vychisl. Mat. Mat. Fiz. 60 (3), 503-519 (2020) [Comput. Math. Math. Phys. 60 (3), 498-513 (2020)].
    doi 10.1134/S0965542520030094
  27. O. Rozanova, “On Nonstrictly Hyperbolic Systems and Models of Natural Sciences Reducible to Them,” AIP Conf. Proc. 2953, Article Number 040011, 040011-1-040011-13 (2023).
    doi 10.1063/5.0177487
  28. B. S. Brook, S. A. E. G. Falle, and T. J. Pedley, “Numerical Solutions for Unsteady Gravity-Driven Flows in Collapsible Tubes: Evolution and Roll-Wave Instability of a Steady State,” J. Fluid Mech. 396, 223-256 (1999).
    doi 10.1017/S0022112099006084
  29. S. J. Sherwin, L. Formaggia, J. Peiró, and V. Franke, “Computational Modelling of 1D Blood Flow with Variable Mechanical Properties and Its Application to the Simulation of Wave Propagation in the Human Arterial System,” Int. J. Numer. Meth. Fluids 43 (6-7), 673-700 (2003).
    doi 10.1002/fld.543