DOI: https://doi.org/10.26089/NumMet.v26r103

Comparison of adaptive mesh refinement approaches on distributed computational system

Authors

  • Sergej K. Grigoriev
  • Anton A. Bay

Keywords:

adaptive mesh refinement
octree-mesh
parallel computations

Abstract

The article discusses block-based and tree-based approaches to adaptive mesh refinement on regular meshes. Our goal is to compare the efficiency of approaches in solving problems on a distributed computational system. Descriptions of the approaches and features of the implementation of difference schemes using them are given. A comparison of the efficiency of the approaches in terms of speed and number of mesh elements when performing three-dimensional calculations of the development of Rayleigh–Taylor instability is made. The modeling used a predictor-corrector scheme, a Godunov-type scheme using linear interpolation, and the HLL method. Grid adaptation is applied in the area of mixing of substances. Experiments compliance of a priori estimates of the effectiveness of the approaches obtained as a result of the experiments.


Published

2025-02-03

Issue

Section

Parallel software tools and technologies

Author Biographies

Sergej K. Grigoriev

Anton A. Bay


References

  1. M. J. Berger and P. Colella, “Local Adaptive Mesh Refinement for Shock Hydrodynamics,” J. Comput. Phys. 82 (1), 64-84 (1989).
    doi 10.1016/0021-9991(89)90035-1begincomment
  2. M. Zingale, A. S. Almgren, M. Barrios Sazo, et al., “The Castro AMR Simulation Code: Current and Future Developments,” J. Phys.: Conf. Ser. 1623, Article Number 012021 (2020).
    doi 10.1088/1742-6596/1623/1/012021endcomment
  3. J. Peraire and A. T. Patera, “Bounds for Linear-Functional Outputs of Coercive Partial Differential Equations: Local Indicators and Adaptive Refinement,” in Studies in Applied Mechanics (Elsevier, Amsterdam, 1998), Vol. 47, pp. 199-216.
  4. S. A. Soukov, “Visualization of the CFD Calculations Results on Adaptive Mixed Meshes,” Sci. Vis. 13 (5), 52-64 (2021).
    doi 10.26583/sv.13.5.05
  5. C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees,” SIAM J. Sci. Comput. 33 (3), 1103-1133 (2011).
    doi 10.1137/100791634
  6. J. Holke, C. Burstedde, D. Knapp, et al., “t8code v. 1.0 - Modular Adaptive Mesh Refinement in the Exascale Era,” in Proc. SIAM Int. Meshing Round Table 2023, Amsterdam, Netherlands, March 6-9, 2023
    https://github.com/DLR-AMR/t8code . Cited January 12, 2025.
  7. R. Wünsch, S. Walch, F. Dinnbier, and A. Whitworth, “Tree-Based Solvers for Adaptive Mesh Refinement Code Flash – I: Gravity and Optical Depths,” Mon. Not. R. Astron. Soc. 475 (3), 3393-3418 (2018).
    doi 10.1093/mnras/sty015
  8. Y. Y. Klein, “Construction of a Multidimensional Parallel Adaptive Mesh Refinement Special Relativistic Hydrodynamics Code for Astrophysical Applications.’’
    doi 10.48550/arXiv.2310.02331
  9. P. MacNeice, K. M. Olson, C. Mobarry, et al., “PARAMESH: A Parallel Adaptive Mesh Refinement Community Toolkit,” Comput. Phys. Commun. 126 (3), 330-354 (2000).
    doi 10.1016/S0010-4655(99)00501-9
  10. W. Zhang, A. Almgren, V. Beckner, et al., “AMReX: A Framework for Block-Structured Adaptive Mesh Refinement,” J. Open Source Softw. 4 (37), Article Number 1370 (2019).
    doi 10.21105/joss.01370
  11. M. Adams, P. Colella, D. T. Graves, et al., Chombo Software Package for AMR Applications Design Document , Technical Report LBNL-6616E (Lawrence Berkeley Nat. Lab., Berkeley, 2015).
    https://crd.lbl.gov/assets/pubs_presos/chomboDesign.pdf . Cited January 12, 2025.
  12. G. L. Bryan, M. L. Norman, B. W. O’Shea, et al., “Enzo: An Adaptive Mesh Refinement Code for Astrophysics,” Astrophys. J. Suppl. Ser. 211 (2), Article Number 19 (2014).
    doi 10.1088/0067-0049/211/2/19
  13. SAMRAI: Structured Adaptive Mesh Refinement Application Infrastructure (2017).
    https://computing.llnl.gov/projects/samrai . Cited January 12, 2025.
  14. R. D. Hornung and S. R. Kohn, “Managing Application Complexity in the SAMRAI Object-Oriented Framework,” Concurr. Comput. Pract. Exp. 14 (5), 347-368 (2002).
    doi 10.1002/cpe.652
  15. D. S. Abdi, A. Almgren, F. X. Giraldo, and I. Jankov, “Comparison of Adaptive Mesh Refinement Techniques for Numerical Weather Prediction.’’
    doi 10.48550/arXiv.2404.16648
  16. G. Karypis, “METIS and ParMETIS,” in Encyclopedia of Parallel Computing (Springer, Boston, 2011), pp. 1117-1124.
  17. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 2009).
    doi 10.1007/b79761
  18. Center for Collective Use of the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences. Hybrid Supercomputer K60.
    https://ckp.kiam.ru . Cited January 12, 2025.