DOI: https://doi.org/10.26089/NumMet.v26r213

Application of the second-order spline approximations to solving integral equations of the second kind

Authors

  • Irina G. Burova
  • Gleb O. Alcybeev

Keywords:

Fredholm integral equations of the second kind
local splines of the second order of approximation
approximation
interpolation

Abstract

Local interpolation splines are used to solve various problems such as interpolation, approximation, the solving of boundary value problems and the solving of integral equations. Polynomial piecewise linear splines have been known for a long time and are a special case of local continuous splines of maximum defect. Non-polynomial local splines were constructed and studied by the authors earlier. The approximation of a function with polynomial or non-polynomial splines is constructed on each grid interval separately as a sum of products of basis splines and values of the function at the grid nodes. We find the formulas of the basis splines in analytical form by solving a system of approximation identities. The paper discusses a numerical method for solving a Fredholm integral equation of the second kind. This method is based on the use of polynomial or non-polynomial splines of the second order of the approximation. The main idea of the proposed method is based on calculating integrals of the product of the kernel and the basis functions. The best result will be obtained if we assume that the function (that is the solution of the integral equation) is a twice differentiable function. When comparing the method under discussion with the well-known numerical methods (for example, methods based on the use of composite quadrature rules of trapezoids and midpoint rectangles) for solving integral equations, it can be noted, that the proposed method in this paper can give a significantly smaller calculation error. The calculation error can be reduced due to the fact that in many cases the integrals can be calculated exactly. When the integrals can’t be calculated exactly then various quadrature formulas can be used to calculate these integrals. The advantages of using local polynomial and non-polynomial splines of the second order of approximation should also include the convenience of their application on a non-uniform grid of nodes. The results of the numerical solution of linear and nonlinear integral Fredholm equations are presented.


Published

2025-05-01

Issue

Section

Methods and algorithms of computational mathematics and their applications

Author Biographies

Irina G. Burova

Gleb O. Alcybeev


References

  1. N. H. Abel, “Untersuchung der Functionen zweier unabh854ngig ver854nderlichen Größen x und y, wie f(x, y), welche die Eigenschaft haben, daß f(z, f(x, y)) eine symmetrische Function von z, x und y ist,” Journal für die Reine und Angewandte Mathematik 1826 (1), 11-15 (1826).
    doi 10.1515/crll.1826.1.11
  2. V. Volterra, “Sopra un problema di elettrostatica,” Nuovo Cim. 16, 49-57 (1884).
    doi 10.1007/BF02737266
  3. I. Fredholm, “Sur une classe d’équations fonctionnelles,” Acta Math. 27 (1), 365-390 (1903).
    doi 10.1007/BF02421317
  4. N. K. Volosova, K. A. Volosov, A. K. Volosova, et al., “Solution of the Fredholm Integral Equations Method of Replacing the Integral by a Quadrature with the Twelveth Order of Error in Matrix Form,” Bull. Perm Univ. 4 (59), 9-17 (2022).
    doi 10.17072/1993-0550-2022-4-9-17
  5. V. V. Voevodin, A. G. Sveshnikov, and E. E. Tyrtyshnikov, “An Effective Numerical Method for Solving an Integral Equation of the Second Kind in Problems of Electrodynamics,” Vestn. Mosk. Univ., Ser. 15: Vychisl. Mat. Kibern., No. 1, 14-26 (1980).
  6. T. E. Moiseev, “On an Integral Representation of the Solution of the Laplace Equation with Mixed Boundary Conditions,” Differ. Uravn. 47 (10), 1446-1451 (2011) [Differ. Equ. 47 (10), 1461-1467 (2011)].
    doi 10.1134/S0012266111100090
  7. M. V. Nikolaev and A. A. Nikitin, “On the Existence and Uniqueness of a Solution of a Nonlinear Integral Equation,” Dokl. Akad. Nauk 488 (6), 595-598 (2019) [Dokl. Math. 100 (2), 485-487 (2019)].
    doi 10.1134/S1064562419050247
  8. R. I. Kadiev and A. Ponosov, “Existence and Uniqueness of Solutions to Nonlinear Functional Integral Itô Equations,” Differ. Uravn. 60 (9), 1167-1189 (2024) [Differ. Equ. 60 (9), 1160-1182 (2024)].
    doi 10.1134/S0012266124090040
  9. T. Van Duzer and C. W. Turner, Principles of Superconductive Devices and Circuits (Pearson, London, 2008).
  10. W. Chang, “Numerical Calculation of the Inductances of a Multi-Superconductor Transmission Line System,” IEEE Tran. Magn. 17 (1), 764-766 (1981).
    doi 10.1109/TMAG.1981.1060982
  11. M. M. Khapaev, “The Method of Boundary Integral Equations for a Model of Electric Current in Superconductors,” Zh. Vychisl. Mat. Mat. Fiz. 38 (1), 115-121 (1998) [Comput. Math. Math. Phys. 38 (1), 115-121 (1998)].
    https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=zvmmf&paperid=1967&option_lang=eng.
  12. D. V. Lukyanenko and A. G. Yagola, “Application of Multiprocessor Systems for Solving Three-Dimensional Fredholm Integral Equations of the First Kind for Vector Functions,” Numerical Methods and Programming 11 (4), 336-343 (2010).
  13. A. A. Nikitin and M. V. Nikolaev, “The Analysis of the Integral Equilibrium Equation with the Kurtic Kernels in Spaces of Different Dimensions,” Vestn. Mosk. Univ., Ser. 15: Vychisl. Mat. Kibern. No. 3, 11-19 (2018).
  14. S. G. Mikhlin, Applications of Integral Equations to Some Problems of Mechanics, Mathematical Physics and Engineering (OGIZ Publ., Moscow-Leningrad, 1947) [in Russian].
  15. M. M. Khapaev, “Numerical Solution of an Integro-Differential Equation for a Sheet Current,” Differ. Uravn. 41 (7), 970-974 (2005) [Differ. Equ. 41 (7), 1019-1024 (2005)].
    doi 10.1007/s10625-005-0243-x
  16. F. Mirzaee and N. Samadyar, “Application of Bernoulli Wavelet Method for Estimating a Solution of Linear Stochastic Itô-Volterra Integral Equations,” Multidiscip. Model. Mater. Struct. 15 (3), 575-598 (2019).
    doi 10.1108/MMMS-04-2018-0075
  17. D. Cerna and V. Finek, “Galerkin Method with New Quadratic Spline Wavelets for Integral and Integro-Differential Equations,” J. Comput. Appl. Math. 363, 426-443 (2020).
    doi 10.1016/j.cam.2019.06.033
  18. V. S. Ryaben’kii, Local Formulas for Smooth Completion and Smooth Interpolation of Functions by Their Values at the Nodes of a Non-Uniform Rectangular Grid , Preprint No. 21 (Keldysh Institute of Applied Mathematics, Moscow, 1974) [in Russian].
  19. S. G. Mikhlin, “Variational-Grid Approximation,” Zap. Nauch. Semin. Leningr. Otd. Mat. Inst. Steklova 48, 32-188 (1974) [in Russian].
  20. B. Tair, S. Segni, H. Guebbai, and M. Ghait, “Two Numerical Treatments for Solving the Linear Integro-Differential Fredholm Equation with a Weakly Singular Kernel,” Numerical Methods and Programming 23 (2), 117-136 (2022).
    doi 10.26089/NumMet.v23r208
  21. F. Mirzaee and S. Alipour, “An Efficient Cubic B-Spline and Bicubic B-Spline Collocation Method for Numerical Solutions of Multidimensional Nonlinear Stochastic Quadratic Integral Equations,” Math. Methods Appl. Sci. 43 (1), 384-397 (2019).
    doi 10.1002/mma.5890
  22. P. Assari, F. Asadi-Mehregan, and M. Dehghan, “The Implication of Local Thin Plate Splines for Solving Nonlinear Mixed Integro-Differential Equations Based on the Galerkin Scheme,” Numer. Math. 12 (4), 1066-1092 (2019).
    doi 10.4208/nmtma.OA-2018-0077
  23. P. Assari and S. Cuomo, “The Numerical Solution of Fractional Differential Equations Using the Volterra Integral Equation Method Based on Thin Plate Splines,” Eng. Comput. 35 (4), 1391-1408 (2019).
    doi 10.1007/s00366-018-0671-x
  24. P. Assari and M. Dehghan, “On the Numerical Solution of Nonlinear Integral Equations on Non-Rectangular Domains Utilizing Thin Plate Spline Collocation Method,” Proc. Indian Acad. Sci.: Math. Sci. 129 (5), Article 83 (2019).
    doi 10.1007/s12044-019-0511-y
  25. I. K. Daugavet, Theory of Approximate Methods. Linear Equations(BKhV-Peterburg, Saint Petersburg, 2006) [in Russian].
  26. I.  G. Burova and Yu. K. Dem’yanovich, Theory of Minimal Splines(St. Petersburg Univ. Press, St. Petersburg, 2000) [in Russian].
  27. I. G. Burova and Yu. K. Dem’yanovich, Minimal Splines and Their Applications(St. Petersburg Univ. Press, St. Petersburg, 2010) [in Russian].
  28. I. G. Burova, “On Left Integro-Differential Splines and Cauchy Problem,” Int. J. Math. Models Methods Appl. Sci. 9, 683-690 (2015).
  29. I. G. Burova and G. O. Alcybeev, “Application of Splines of the Second Order Approximation to Volterra Integral Equations of the Second Kind. Applications in Systems Theory and Dynamical Systems,” Int. J. Circuits Syst. Signal Process. 15, 63-71 (2021).
    doi 10.46300/9106.2021.15.8
  30. S. Boukansous, X. Mande, B. Tair, and H. Guebbai, “Construction of the Generalized Iterative Methods Used for Solution of the Fredholm Integral Equation,” Numerical Methods and Programming 23 (4), 350-364 (2022).
    doi 10.26089/NumMet.v23r422
  31. I. Aziz, Siraj-ul-Islam, and F. Khan, “A New Method Based on Haar Wavelet for the Numerical Solution of Two-Dimensional Nonlinear Integral Equations,” J. Comput. Appl. Math. 272, 70-80 (2014).
    doi 10.1016/j.cam.2014.04.027