Spectral preconditioner for solving the Poisson equation
Authors
-
Aleksei A. Manaev
-
Vadim V. Lisitsa
Keywords:
Poisson equation
Conjugate gradient method
spectral decomposition
Abstract
The paper presents an approach to constructing a preconditioner for numerically solving the Poisson equation for a substantially inhomogeneous medium in application to problems of computational rock physics. The preconditioner is an operator inverse to the discrete Laplace operator, but for a simplified, layered model of the medium. In this case, the Laplace operator is inverted using spectral decomposition in one of the spatial directions and a sweep method for a series of one-dimensional problems in the second direction. This approach to constructing a preconditioner ensures that the number of iterations does not depend on the size of the problem being solved, which is confirmed by a series of numerical experiments. An important feature of the proposed approach is the use of layered models of the medium to construct the preconditioner, which increases the convergence rate of the conjugate gradient method by 10–40% compared to using a preconditioner based on inverting the Laplace operator for a homogeneous medium. In this case, the acceleration depends on the contrast of the coefficients of the original model; with increasing contrast, the efficiency of the proposed approach also increases.
Section
Methods and algorithms of computational mathematics and their applications
Author Biographies
Vadim V. Lisitsa
Sobolev Institute of Mathematics SB RAS
• Leading Researcher
References
- E. H. Saenger, M. Lebedev, D. Uribe, et al., “Analysis of High-Resolution X-Ray Computed Tomography Images of Bentheim Sandstone under Elevated Confining Pressures,” Geophys. Prospect. 64 (4), 848-859 (2016).
doi 10.1111/1365-2478.12400
- V. Shulakova, M. Pervukhina, T. M. Müller, et al., “Computational Elastic Up-scaling of Sandstone on the Basis of X-Ray Micro-Tomographic Images,” Geophys. Prospect. 61 (2), 287-301 (2012).
doi 10.1111/j.1365-2478.2012.01082.x
- H. Andr854, N. Combaret, J. Dvorkin, et al., “Digital Rock Physics Benchmarks -- Part II: Computing Effective Properties,” Comput. Geosci. 50, 33-43 (2013).
doi 10.1016/j.cageo.2012.09.008
- T. S. Khachkova, V. V. Lisitsa, D. R. Kolyukhin, and G. V. Reshetova, “Numerical Estimation of Interface Roughness Effect on Upscaled Elastic Properties of Layered Media,” Numerical Methods and Programming 21 (3), 225-240 (2020).
doi 10.26089/NumMet.v21r320
- G. V. Reshetova and T. S. Khachkova, “A Numerical Method to Estimate the Effective Elastic Moduli of Rocks from Two- and Three-Dimensional Digital Images of Rock Core Samples,” Numerical Methods and Programming 18 (4), 416-433 (2017).
doi 10.26089/NumMet.v18r435
- T. S. Khachkova, Ya. V. Bazaikin, and V. V. Lisitsa, “Use of the Computational Topology to Analyze the Pore Space Changes during Chemical Dissolution,” Numerical Methods and Programming 21 (1), 41-55 (2020).
doi 10.26089/NumMet.v21r104
- R. V. Vasilyev, K. M. Gerke, M. V. Karsanina, and D. V. Korost, “Solution of the Stokes Equation in Three-Dimensional Geometry by the Finite-Difference Method,” Mat. Model. 27 (6), 67-80 (2015) [Math. Models Comput. Simul. 8 (1), 63-72 (2016)].
doi 10.1134/s2070048216010105
- K. A. Gadylshina, T. S. Khachkova, and V. V. Lisitsa, “Numerical Modeling of Chemical Interaction between a Fluid and Rocks,” Numerical Methods and Programming 20 (4), 457-470 (2019).
doi 10.26089/NumMet.v20r440
- V. Lisitsa, Ya. Bazaikin, and T. Khachkova, “Computational Topology-Based Characterization of Pore Space Changes due to Chemical Dissolution of Rocks,” Appl. Math. Model. 88, 21-37 (2020).
doi 10.1016/j.apm.2020.06.037
- S. Molins, D. Trebotich, L. Yang, et al., “Pore-Scale Controls on Calcite Dissolution Rates from Flow-through Laboratory and Numerical Experiments,” Environ. Sci. Technol. 48 (13), 7453-7460 (2014).
doi 10.1021/es5013438
- C. Dorn and M. Schneider, “Lippmann-Schwinger Solvers for the Explicit Jump Discretization for Thermal Computational Homogenization Problems,” Int. J. Numer. Methods Eng. 118 (11), 631-653 (2019).
doi 10.1002/nme.6030
- T. Khachkova, V. Lisitsa, G. Reshetova, and V. Tcheverda, “GPU-based Algorithm for Evaluating the Electrical Resistivity of Digital Rocks,” Comput. Math. App. 82, 200-211 (2021).
doi 10.1016/j.camwa.2020.11.005
- T. S. Khachkova, V. V. Lisitsa, G. V. Reshetova, and V. A. Tcheverda, “Numerical Estimation of Electrical Resistivity in Digital Rocks Using GPUs,” Numerical Methods and Programming. 21 (3), 306-318 (2020).
doi 10.26089/NumMet.v21r326
- Y. Saad, Iterative Methods for Sparse Linear Systems(SIAM, Philadelphia, 2003; Mosk. Gos. Univ., Moscow, 2013).
doi 10.1137/1.9780898718003
- S. K. Godunov, Difference Schemes(Nauka, Moscow, 1977; North-Holland, Amsterdam, 1987).
- A. A. Samarskii, The Theory of Difference Schemes(Nauka, Moscow, 1989; CRC Press, Boca Raton, 2001).
- E. Haber, U. M. Ascher, D. A. Aruliah, and D. W. Oldenburg, “Fast Simulation of 3D Electromagnetic Problems Using Potentials,” J. Comput. Phys. 163 (1), 150-171 (2000).
doi 10.1006/jcph.2000.6545
- V. Kostin, S. Solovyev, A. Bakulin, and M. Dmitriev, “Direct Frequency-Domain 3D Acoustic Solver with Intermediate Data Compression Benchmarked Against Time-Domain Modeling for Full-Waveform Inversion Applications,” Geophysics 84 (4), T207-T219 (2019).
doi 10.1190/geo2018-0465.1
- S. Chandrasekaran, P. Dewilde, M. Gu, and N. Somasunderam, “On the Numerical Rank of the Off-Diagonal Blocks of Schur Complements of Discretized Elliptic PDEs,” SIAM J. Matrix Anal. Appl. 31 (5), 2261-2290 (2010).
doi 10.1137/090775932
- K. V. Voronin and S. A. Solovyev, “Solution of the Helmholtz Problem Using the Preconditioned Low-Rank Approximation Technique,” Numerical Methods and Programming 16 (2), 268-280 (2015).
doi 10.26089/NumMet.v16r226
- S. A. Solovyev, “Application of the Low-Rank Approximation Technique in the Gauss Elimination Method for Sparse Linear Systems,” Numerical Methods and Programming 15 (3), 441-460 (2014).
- H. Johansen and P. Colella, “A Cartesian Grid Embedded Boundary Method for Poisson’s Equation on Irregular Domains,” J. Comput. Phys. 147 (1), 60-85 (1998).
doi 10.1006/jcph.1998.5965
- K. Stüben, “A Review of Algebraic Multigrid,” J. Comput. Appl. Math. 128 (1-2), 281-309 (2001).
doi 10.1016/S0377-0427(00)00516-1
- D. A. Neklyudov, I. Yu. Silvestrov, and V. A. Tcheverda, “A 3D Helmholtz Iterative Solver with a Semi-Analytical Preconditioner for Acoustic Wavefield Modeling in Seismic Exploration Problems,” Numerical Methods and Programming 15 (3), 514-529 (2014).
- M. Belonosov, V. Kostin, D. Neklyudov, and V. Tcheverda, “3D Numerical Simulation of Elastic Waves with a Frequency-Domain Iterative Solver,” Geophysics 83 (6), T333-T344 (2018).
doi 10.1190/geo2017-0710.1
- E. Haber and U. M. Ascher, “Fast Finite Volume Simulation of 3D Electromagnetic Problems with Highly Discontinuous Coefficients,” SIAM J. Sci. Comput. 22 (6), 1943-1961 (2001).
doi 10.1137/S1064827599360741
- A. Pleshkevich, D. Vishnevskiy, and V. Lisitsa, “Sixth-Order Accurate Pseudo-Spectral Method for Solving One-Way Wave Equation,” Appl. Math. Comput. 359, 34-51 (2019).
doi 10.1016/j.amc.2019.04.029
- E. Purcell, Electricity and Magnetism (McGraw-Hill, New York, 1965; Nauka, Moscow, 1975).
- N. S. Bakhvalov, Numerical Methods(Nauka, Moscow, 1973; Mir, Moscow, 1977).
- V. I. Krylov, Approximate Calculation of Integrals(Nauka, Moscow, 1967; Dover, New York, 2006).
- J. D. Hyman and C. L. Winter, “Stochastic Generation of Explicit Pore Structures by Thresholding Gaussian Random Fields,” J. Comput. Phys. 277, 16-31 (2014).
doi 10.1016/j.jcp.2014.07.046