DOI: https://doi.org/10.26089/NumMet.v26r212

Approximate integration of the Cauchy problem for canonical systems of second order ordinary differential equations by the Chebyshev series method with precision control

Authors

  • Sergei F. Zaletkin

Keywords:

ordinary differential equations
approximate analytic methods
numerical methods
orthogonal expansions
shifted Chebyshev series
Markov’s quadrature formulas
polynomial approximation
precision control
error estimate
automatic step size control

Abstract

An approximate method of solving the Cauchy problem for canonical systems of second order ordinary differential equations is considered. The method is based on using the shifted Chebyshev series and a Markov quadrature formula. Some approaches are given to estimate the errors of an approximate solution and its derivative expressed by partial sums of a certain order shifted Chebyshev series. The errors are estimated using the second approximation of the solution calculated in a special way and expressed by a partial sum of a higher order series. An algorithm of partitioning the integration interval into elementary subintervals to ensure the computation of the solution and its derivative with prescribed accuracy is discussed on the basis of proposed approaches to error estimation.


Published

2025-04-28

Issue

Section

Methods and algorithms of computational mathematics and their applications

Author Biography

Sergei F. Zaletkin


References

  1. S. F. Zaletkin, “Numerical Integration of Ordinary Differential Equations Using Orthogonal Expansions,” Mat. Model. 22 (1), 69-85 (2010).
  2. O. B. Arushanyan, N. I. Volchenskova, and S. F. Zaletkin, “Application of Orthogonal Expansions for Approximate Integration of Ordinary Differential Equations,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 4, 40-43 (2010) [Moscow Univ. Math. Bull. 65 (4), 172-175 (2010)].
    doi 10.3103/S0027132210040078
  3. O. B. Arushanyan, N. I. Volchenskova, and S. F. Zaletkin, “Calculation of Expansion Coefficients of Series in Chebyshev Polynomials for a Solution to a Cauchy Problem,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No 5, 24-30 (2012) [Moscow Univ. Math. Bull. 67 (5-6), 211-216 (2012)].
    doi 10.3103/S0027132212050051
  4. O. B. Arushanyan and S. F. Zaletkin, “To the Orthogonal Expansion Theory of the Solution to the Cauchy Problem for Second-Order Ordinary Differential Equations,” Numerical Methods and Programming 19 (2), 178-184 (2018).
  5. O. B. Arushanyan and S. F. Zaletkin, “An Implementation of the Chebyshev Series Method for the Approximate Analytical Solution of Second-Order Ordinary Differential Equations,” Numerical Methods and Programming 20 (2), 97-103 (2019).
    doi 10.26089/NumMet.v20r210
  6. O. B. Arushanyan and S. F. Zaletkin, “Application of Markov’s Quadrature in Orthogonal Expansions,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 6, 18-22 (2009) [Moscow Univ. Math. Bull. 64 (6), 244-248 (2009)].
    doi 10.3103/S0027132209060035
  7. S. F. Zaletkin, “Markov’s Formula with Two Fixed Nodes for Numerical Integration and Its Application in Orthogonal Expansions,” Numerical Methods and Programming 6 (3), 1-17 (2005).
  8. C. Lanczos, Applied Analysis (Prentice-Hall, Englewood Cliffs, 1956; Fizmatgiz, Moscow, 1961).
  9. R. W. Hamming, Numerical Methods for Scientists and Engineers (McGraw-Hill, New York, 1962; Nauka, Moscow, 1972).
  10. S. Paszkowski, Numerical Applications of Chebyshev Polynomials and Series (PWN, Warsaw, 1975; Nauka, Moscow, 1983).
  11. O. B. Arushanyan and S. F. Zaletkin, “An Error Estimate for an Approximate Solution to Ordinary Differential Equations Obtained Using the Chebyshev Series,” Numerical Methods and Programming 21 (3), 241-250 (2020).
    doi 10.26089/NumMet.v21r321
  12. N. N. Kalitkin and P. V. Koryakin, Numerical Methods Vol. 2: Methods of Mathematical Physics (Akademiya, Moscow, 2013) [in Russian].
  13. E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems (Springer, Berlin, 1987; Mir, Moscow, 1990).
  14. N. M. Ershov, Differential Equations in Applied Problems (DMK Press, Moscow, 2021) [in Russian].
  15. M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover Publ., New York, 1970; Nauka, Moscow, 1979).
  16. I. N. Bronshtein and K. A. Semendyaev, Mathematical Handbook for Engineers and Students (Nauka, Moscow, 1986) [in Russian].
  17. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Nauka, Moscow, 1987) [in Russian].
  18. O. B. Arushanyan and S. F. Zaletkin, Numerical Solution of Ordinary Differential Equations in Fortran (Mosk. Gos. Univ., Moscow, 1990) [in Russian].
  19. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics , Volumes 1-3 (Addison-Wesley, Boston, 2005).