Scheme of solution of the heat and mass transfer problem in the hydration model of cement composite
Authors
-
Maria A. Dmitrieva
-
Vladimir N. Leitsin
-
Alina D. Kogai
Keywords:
computer modeling
cement hydration
composite material
two-temperature heat balance equations
heat transfer problem
phase transformations
filtration
Abstract
The paper presents a developed model of related physical and chemical processes in reacting medium, according to which a cement composite is considered as a heterogeneous mixture of reagents and filler with specified concentrations and porosity. Water filtration due to capillary and thermocapillary forces ensures convective heat and mass transfer. The heat and mass transfer problem is presented as a two-temperature non-stationary nonlinear boundary value problem of heat conductivity of the frame and liquid phase with heat sources of chemical nature and sinks caused by water evaporation. Verification of the adequacy of the developed scheme for solving the boundary value problem of thermal conductivity is realized by solving a test one-dimensional problem with constant coefficients. The convergence of the problem solution scheme is confirmed in the process of modeling the hydration process of a cement composite at different steps in time and space.
Section
Methods and algorithms of computational mathematics and their applications
References
- V. A. Smirnov, E. V. Korolev, and A. V. Evstigneev, “The Review of the Modeling Methods and Numerical Analysis Software for Nanotechnology in Material Science,” Nanotechnologies in Construction (Nanotekhnologii v Stroitel’stve) 6 (5), 48-58 (2014).
https://nanobuild.ru/en_EN/nanobuild-5-2014-pages-48-58/. Cited June 23, 2025.
https://nanobuild.ru/en_EN/journal/Nanobuild-5-2014/48-58.pdf . Cited June 23, 2025.
- R. Kondo and S. Ueda, “Kinetics and Mechanism of the Hydration of Cements,” in Proc. of the Fifth Int. Symposium on Chemistry of Cements, Tokyo, Japan, October 7-11, 1968 , Volume 2, pp. 203-248 (1968).
https://iccc-online.org/fileadmin/gruppen/iccc/ICCC05_1968.pdf . Cited June 23, 2025.
- J. M. Pommersheim and J. R. Clifton, “Mathematical Modeling of Tricalcium Silicate Hydration,” Cem. Concr. Res. 9 (6), 765-770 (1979).
doi 10.1016/0008-8846(79)90072-3
- J. M. Pommersheim and J. R. Clifton, “Mathematical Modeling of Tricalcium Silicate Hydration. II. Hydration Sub-models and the Effect of Model Parameters,” Cem. Concr. Res. 12 (6), 765-772 (1982).
doi 10.1016/0008-8846(82)90040-0
- P. P. Budnikov, S. M. Royak, Yu. S. Malinin, and M. M. Mayants, “The Hydration Kinetics of Portland Cement Clinker Minerals in Hydrothermal Treatment,” Dokl. Akad. Nauk SSSR 148 (1), 91-94 (1963).
- O. N. Phillimonova, M. V. Enyutina, A. A. Khvostov, and V. I. Ryashskih, “Modeling the Process of Destruction of Cement Particles at the Initial Stage of Hydration,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 62 (11), 138-142 (2019).
doi 10.6060/ivkkt.20196211.5986
- W. A. Johnson and R. F. Mehl, “Reaction Kinetics in Processes of Nucleation and Growth,” Trans. Am. Inst. Min. Metall. Eng. 135, 416-458 (1939).
- J. W. Cahn, “The Kinetics of Grain Boundary Nucleated Reactions,” Acta Metall. 4 (5), 449-459 (1956).
doi 10.1016/0001-6160(56)90041-4
- M. Brown, D. Dollimore, and A. K. Galwey, Theory of Solid-State Reaction Kinetics (Elsevier, Amsterdam, 1980), pp. 41-72.
- G. V. Nesvetaev and Ta Van Fan, “Heat Release during Hydration and the Ultimate Strength of Cement Stone,” Naukovedenie №. 3, 1-5 (2013).
https://naukovedenie.ru/PDF/29trgsu313.pdf . Cited 23 June, 2025.
- A. K. Schindler and K. J. Folliard, “Heat of Hydration Models for Cementitious Materials,” ACI Mater. J. 102 (1), 24-33 (2005).
- L. J. Parrott and D. C. Killoh, “Prediction of Cement Hydration,” Br. Ceram. Proc. Issue 35, 41-53 (1984).
- X. Pang and C. Meyer, “Modeling Cement Hydration by Connecting a Nucleation and Growth Mechanism with a Diffusion Mechanism. Part II: Portland Cement Paste Hydration,” Sci. Eng. Compos. Mater. 23 (6), 605-615 (2016).
doi 10.1515/secm-2013-0259
- Z. P. Bauzant and S. Prasannan, “Solidification Theory for Concrete Creep. I: Formulation,” J. Eng. Mech. 115 (8), 1691-1703 (1990).
http:// cee.northwestern.edu/people/bazant/PDFs/Papers/250.pdf Cited June 23, 2025.
- P. I. Vasiliev, Yu. I. Kononov, and Ya. N. Chirkov, Reinforced Concrete Structures of Hydraulic Structures(Vysshaya Shkola, Kyiv, 1982) [in Russian].
- S. D. Okorokov, I. D. Zaporozhets, and A. A. Pariyskiy, Heat Generation of Concrete(Stroyizdat, Leningrad-Moscow, 1966) [in Russian].
- S. V. Aleksandrovsky, Calculation of Concrete and Reinforced Concrete Structures for Changes in Temperature and Humidity, Taking into Account Concrete Creep(Inst. Reinforced Concrete, Moscow, 2004) [in Russian].
- S. V. Fedosov, V. I. Bobylev, A. M. Ibragimov, et al., “Modeling of Concrete Strength Gain during Cement Hydration,” Building Materials (Stroitel’nye materialy). 11, 38-41 (2011).
- J. L. Poole, K. A. Riding, K. J. Folliard, et al., “Methods for Calculating Activation Energy for Portland Cement,” ACI Mater. J. 104 (1), 303-311 (2007).
- A. V. Usherov-Marshak, Calorimetry of Cement and Concrete: Selected Works(Fact Publ., Kharkiv, 2002) [in Russian].
- M. A. Dmitrieva, V. N. Leitsin, A. O. Tovpinets, and A. D. Panfilova, “An Approach to Computer Modeling of Concrete Mixture Hydration Processes,” in Proc. Conf. on Modern Building Materials and Technologies, Kaliningrad, Russia, May 25-28, 2021 (IKBFU, Kaliningrad, 2023), pp. 30-39.
- D. P. Bentz, “Three-Dimensional Computer Simulation of Portland Cement Hydration and Microstructure Development,” J. Am. Ceram. Soc. 80 (1), 3-21 (1997).
doi 10.1111/j.1151-2916.1997.tb02785.x
- D. P. Bentz and E. J. Garboczi, “A Digitized Simulation Model for Microstructural Development,” Adv. Cem. Mater. – Ceram. Trans. 16. 211-226 (1991).
- J. W. Bullard, “A Three-Dimensional Microstructural Model of Reactions and Transport in Aqueous Mineral Systems,” Model. Simul. Mater. Sci. Eng. 15 (7), 711-738 (2007).
doi 10.1088/0965-0393/15/7/002
- M. A. Dmitrieva, V. N. Leitsin, A. D. Kogai, and A. O. Tovpinets, “Modeling of Coupled Processes Accompanying the Early Strength Gain of a Cement Polyfractional System,” Computational Continuum Mechanics (Vychislitel’naya Mekhanika Sploshnyh Sred). 17 (3), 347-361 (2024).
doi 10.7242/1999-6691/2024.17.3.29
- V. N. Leitsin and M. A. Dmitrieva, Modeling of Mechanochemical Processes in Reacting Powder Media(NTL Press, Tomsk, 2006) [in Russian].
- O. G. Martynenko and N. V. Pavlyukevich, “Heat and Mass Transfer in Porous Media,” Inzhenerno-Fizicheskii Zhurnal 71, N 1, 5-18 (1998) [J. Eng. Phys. Thermophys. 71 (1), 1-13 (1998)].
doi 10.1007/BF02682488
- E. A. Ivanchik and A. A. Zhilenkov, “A New Method for Determining the Permeability Coefficient of Porous Media for Assessing Soil Properties Using the Example of the Arctic Region,” Russian Arctic (Rossijskaya Arktika). No. 3, 21-29 (2022).
doi 10.24412/2658-4255-2022-3-21-29
- M. G. Semena, A. P. Nishchik, G. A. Melnichuk, and Yu. E. Nikolaenko, Method for Determining the Permeability Coefficient of Porous Materials with Known Average Porosity, Author’s Certificate No. 744286. Date of Registration: June 30, 1980.
- A. V. Yuryev, E. Yu. Pustova, and M. A. Zvonkov, Method for Determining the Permeability Coefficient when Changing the Thermobaric Conditions on Core Samples, Patent No. 2680843. Date of Registration: February 28, 2019.
- A. M. Timokhin and A. G. Knyazeva, “Modes of Reaction front Propagation in Coupled Thermal and Mechanical Model of Solid-Phase Combustion,” Chem. Phys. Reports 15 (10), 1497-1514 (1996).
- V. Slowik, M. Schmidt, and R. Fritzsch, “Capillary Pressure in Fresh Cement-Based Materials and Identification of the Air Entry Value,” Cem. Concr. Compos. 30 (7), 557-565 (2008).
doi 10.1016/j.cemconcomp.2008.03.002
- S. M. Nicos and F. F. Chiara, “Capillary Transport in Mortars and Concrete,” Cem. Concr. Res. 27 (5), 747-760 (1997).
doi 10.1016/S0008-8846(97)00052-5
- V. V. Troyan, “Frost Resistance of Concrete as a Function of Compatibility of Cement and Admixture,” Bull. Polotsk State Univ. Ser. F. Construction. Applied Sciences (Vestnik Polotskogo Gos. Univ. Stroitel’stvo. Prikladnye Nauki). 16, 49-53 (2014).
- M. A. Goldshtik, Transfer Processes in the Granular Layer(Inst. of Thermal Physics, Novosibirsk, 1984) [in Russian].
- Yu. A. Buevich and Yu. A. Korneev, “Effective Thermal Conductivity of a Dispersed Medium at Low Peclet Numbers,” Inzhenerno-Fizicheskii Zhurnal 31 (4), 607-612 (1976).
- J. Dalton, “Experimental Essays on Evaporation,” Manch. Lit. Philos. Soc. 5, 536-602 (1802).
- C. A. Menzel, “Causes and Prevention of Crack Development in Plastic Concrete,” Proc. Portland Cement Association, 130-136 (1954).
- H. L. Penman, “Natural Evaporation from Open Water, Bare Soil and Grass,” Proc. of the Royal Society of London, Series A. 193, 120-145 (1948).
doi 10.1098/rspa.1948.0037
- M. Örvös, V. Szabó, and T. Poós, “Rate of Evaporation from the Free Surface at a Heated Liquid,” Zh. Prikl. Mekh. Tekh. Fiz. 57 (6), 168-179 (2016) [J. Appl. Mech. Tech. Phys. 57 (6), 1108-1117 (2016)].
doi 10.1134/S0021894416060195
- Thermal protection of buildings: SP 50.13330.2012.Ministry of Regional Development of Russia.Moscow, 2012.
- N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].
- P. N. Vabishchevich and M. M. Chernyshov, “Difference Schemes with Weights for Modelling Fluid Flows in the Shallow Water Approximation,” Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 24 (4), 450-462 (2023).
doi 10.26089/NumMet.v24r431