DOI: https://doi.org/10.26089/NumMet.v26r319

Systematic numerical search of steady-state solutions for the system of coupled Nonlinear Schrodinger Equations with additional double-well potential

Authors

  • Nikita A. Kutsenko
  • Georgy L. Alfimov

Keywords:

The Nonlinear Schrodinger Equation
the Gross-Pitaevskii equation
stationary nonlinear modes
double well potential
Proof-of-concept computations
two-component solitons

Abstract

We study stationary solutions of a system of coupled Nonlinear Schrodinger equations with additional double-well potential. In the theory of Bose-Einstein Condensate (BEC) these equations are called the Gross-Pitaevskii equations and the system describes the dynamics of a sigar-shape BEC cloud that consists of atom of two types. Stationary solutions of the system (called also "nonlinear modes") satisfy a system of two non-autonomous ODEs. The problem is stated as follows: it is necessary (i) to find all localized (i.e., that vanish at plus and minus infinity) solutions of this ODE system that coexist for given parameter values and (ii) to justify the completeness of the search conducted. For this purpose, we employed the method of "filtering out" solutions with singularities developed by our team previously. It consists in scanning of some area in the space of initial data for the Cauchy problem for the system. While this procedure, the solutions that have singularities (i.e., that tend to infinity at a finite value of argument) are detected and excluded from consideration. The diagnostics of the singularities and the criterium for the scanning to stop are based on rigorous mathematical statements. As a result, we identify the parameter regions where nonlinear modes of different types exist ("bright-dark solitons", "dark-dark solitons" etc.)



Downloads

Published

2025-07-18

Issue

Section

Methods and algorithms of computational mathematics and their applications

Authors

Nikita A. Kutsenko

Georgy L. Alfimov


References

  1. T. Sowinski and M. A. Garcia-March, “One-Dimensional Mixtures of Several Ultracold Atoms: A Review,” Rep. Prog. Phys. 82 (10), Article Number 104401 (2019).
    doi 10.1088/1361-6633/ab3a80
  2. Th. Busch and J. R. Anglin, “Dark-Bright Solitons in Inhomogeneous Bose-Einstein Condensates,” Phys. Rev. Lett. 87 (1), Article Id. 010401 (2001).
    doi 10.1103/PhysRevLett.87.010401
  3. C. Becker, S. Stellmer, P. Soltan-Panahi, et al., “Oscillations and Interactions of Dark and Dark-Bright Solitons in Bose-Einstein Condensates,” Nat. Phys. 4, 496-501 (2008).
    doi 10.1038/nphys962
  4. P. G. Kevrekidis and D. J. Frantzeskakis, “Solitons in Coupled Nonlinear Schrödinger Models: A Survey of Recent Developments,” Rev. Phys. 1, 140-153 (2016).
    doi 10.1016/j.revip.2016.07.002
  5. P. G. Kevrekidis, H. E. Nistazakis, D. J. Frantzeskakis, et al., “Families of Matter-Waves in Two-Component Bose-Einstein Condensates,” Eur. Phys. J. D 28 (2), 181-185 (2004).
    doi 10.1140/epjd/e2003-00311-6
  6. S. Middelkamp, J. J. Chang, C. Hamner, et al., “Dynamics of Dark-Bright Solitons in Cigar-shaped Bose-Einstein Condensates,” Phys. Lett. A 375 (3), 642-646 (2011).
    doi 10.1016/j.physleta.2010.11.025
  7. D. Yan, J. J. Chang, C. Hamner, et al., “Beating Dark-Dark Solitons in Bose-Einstein Condensates,” J. Phys. B: At. Mol. Opt. Phys. 45 (11), Article Number 115301 (2012).
    doi 10.1088/0953-4075/45/11/115301
  8. W. Wang, L.-C. Zhao, E. G. Charalampidis, and P. G. Kevrekidis, “Dark-Dark Soliton Breathing Patterns in Multi-Component Bose-Einstein Condensates,” J. Phys. B: At. Mol. Opt. Phys. 54 (5), Article Number 055301 (2021).
    doi 10.1088/1361-6455/abe67d
  9. W. Wang, “Systematic Solitary Waves from Their Linear Limits in Two-Component Bose-Einstein Condensates with Unequal Dispersion Coefficients,” J. Phys. B: At. Mol. Opt. Phys. 56 (13), Article Number 135301 (2023).
    doi 10.1088/1361-6455/acdb16
  10. G. L. Alfimov, A. P. Fedotov, N. A. Kutsenko, and D. A. Zezyulin, “Stationary Modes for Vector Nonlinear Schrödinger-Type Equations: A Numerical Procedure for Complete Search and Its Mathematical Background,” Phys. D: Nonlinear Phenom. 454, Article Id. 133858 (2023).
    doi 10.1016/j.physd.2023.133858
  11. G. L. Alfimov and A. I. Avramenko, “Coding of Nonlinear States for the Gross-Pitaevskii Equation with Periodic Potential,” Phys. D: Nonlinear Phenom. 254, 29-45 (2013).
    doi 10.1016/j.physd.2013.03.009
  12. G. L. Alfimov, P. P. Kizin, and D. A. Zezyulin, “Gap Solitons for the Repulsive Gross-Pitaevskii Equation with Periodic Potential: Coding and Method for Computation,” Discrete Contin. Dyn. Syst. Ser. B 22 (4), 1207-1229 (2017).
    doi 10.3934/dcdsb.2017059
  13. M. E. Lebedev and G. L. Alfimov, “Numerical Evidence of Hyperbolic Dynamics and Coding of Solutions for Duffing-Type Equations with Periodic Coefficients,” Regul. Chaot. Dyn. 29 (3), 451-473 (2024).
    doi 10.1134/S156035472451004X
  14. C. Wang, P. G. Kevrekidis, N. Whitaker, and B. A. Malomed, “Two-Component Nonlinear Schrödinger Models with a Double-Well Potential,” Phys. D: Nonlinear Phenom. 237 (22), 2922-2932 (2008).
    doi 10.1016/j.physd.2008.04.023
  15. S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, “Coherent Oscillations between Two Weakly Coupled Bose-Einstein Condensates: Josephson Effects, pi-Oscillations, and Macroscopic Quantum Self-Trapping,” Phys. Rev. A 59 (1), 620-633 (1999).
    doi 10.1103/PhysRevA.59.620
  16. F. A. Berezin and M. A. Shubin, The Schrödinger Equation(Kluwer, Dordrecht, 1991; Mosk. Gos. Univ., Moscow, 1983).
    doi 10.1007/978-94-011-3154-4
  17. G. L. Alfimov and D. A. Zezyulin, “Nonlinear Modes for the Gross-Pitaevskii Equation -- a Demonstrative Computation Approach,” Nonlinearity 20 (9), 2075-2092 (2007).
    doi 10.1088/0951-7715/20/9/004
  18. R. Navarro, R. Carretero-González, and P. G. Kevrekidis, “Phase Separation and Dynamics of Two-Component Bose-Einstein Condensates,” Phys. Rev. A 80 (2), Article Id. 023613 (2009).
    doi 10.1103/PhysRevA.80.023613
  19. W. Wang, “Systematic Vector Solitary Waves from Their Linear Limits in One-Dimensional n-Component Bose-Einstein Condensates,” Phys. Rev. E 104 (1), Article Number 014217 (2021).
    doi 10.1103/PhysRevE.104.014217
  20. W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit. An Object-Oriented Approach to 3D Graphics
    https:// gitlab.kitware.com/vtk/textbook/raw/master/VTKBook/VTKTextBook.pdf . Cited June 28, 2025.
  21. F. K. Abdullaev, R. M. Galimzyanov, and A. M. Shermakhmatov, “Beyond-Mean-Field Effects in Dynamics of BEC in the Double-Well Potential,” Eur. Phys. J. D 78 (9), Article Id. 118 (2024).
    doi 10.1140/epjd/s10053-024-00909-4