Application of the nudging technique to produce initial states for the INM RAS climate model seasonal hindcasts
Authors
-
Maria A. Tarasevich
-
Evgeny M. Volodin
Keywords:
INM RAS climate model
nudging
seasonal hindcasts
initialization
Abstract
This study examines the implementation of nudging in the INM RAS global coupled climate model to improve the initial states for seasonal hindcasts. We compare results of three nudging experiments with both reanalyses data and ensemble of CMIP6 historical experiments. The results show that nudging significantly reduces model biases in atmosphere and ocean fields. The experiment with nudging excluding lower atmospheric levels yields the best performance by minimizing the impact of the relaxation procedures on the model physics in the atmosphere boundary layer. We compare the quality of the hindcasts for November–March obtained with different initialization techniques. The initialization approach using nudging outperforms other initialization methods for hindcasts of the Northern Hemisphere winter season with one-month lead time. However, for the first forecast month the full field initialization demonstrates the best results. The study highlights that nudging in the ocean model is essential to maintain hindcast skill over longer lead times and proposes nudging as a promising approach for initialization of the annual-to-decadal climate predictions.
Section
Methods and algorithms of computational mathematics and their applications
References
- E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, et al., “Simulation of the present-day climate with the climate model INMCM5,” Climate Dynamics 49 (11), 3715-3734 (2017).
doi 10.1007/s00382-017-3539-7
- V. Eyring, S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, “Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization,” Geoscientific Model Development 9 (5), 1937-1958 (2016).
doi 10.5194/gmd-9-1937-2016
- L. Bock, A. Lauer, M. Schlund, M. Barreiro, N. Bellouin, C. Jones, et al., “Quantifying progress across different CMIP phases with the ESMValTool,” J. Geophys. Research: Atmospheres 125, e2019JD032321 (2020).
doi 10.1029/2019JD032321
- Y.-H. Kim, S.-K. Min, X. Zhang, J. Sillmann, and M. Sandstad, “Evaluation of the CMIP6 multi-model ensemble for climate extreme indices,” Weather and Climate Extremes 29, 100269 (2020).
doi 10.1016/j.wace.2020.100269
- E. Volodin and A. Gritsun, “Nature of the Decrease in Global Warming at the Beginning of the 21st Century,” Dokl. Earth Sc. 482 (1), 1221-1224 (2018).
doi 10.1134/S1028334X18090210
- B. C. O’Neill, C. Tebaldi, D. P. van Vuuren, et al., “The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6,” Geoscientific Model Development 9, 3461-3482 (2016).
doi 10.5194/gmd-9-3461-2016
- M. Meinshausen, Z. R. J. Nicholls, J. Lewis, et al., “The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500,” Geoscientific Model Development 13, 3571-3605 (2020).
doi 10.5194/gmd-13-3571-2020
- C. Tebaldi, K. Debeire, V. Eyring, et al., “Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6,” Earth Syst. Dynam. 12, 253-293 (2021).
doi 10.5194/esd-12-253-2021
- W. Hazeleger, C. Severijns, T. Semmler, et al., “EC-Earth: A Seamless Earth-System Prediction Approach in Action,” Bulletin of the American Meteorological Society 91 (10), 1357-1364 (2010).
doi 10.1175/2010BAMS2877.1
- B. Hoskins, “The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science,” Q.J.R. Meteorol. Soc. 139 (672), 573-584, (2013).
doi 10.1002/qj.1991
- M. A. Tolstykh, J.-F. Geleyn, E. M. Volodin, et al., “Development of the multiscale version of the SL-AV global atmosphere model,” Russ. Meteorol. Hydrol. 40, 374-382 (2015).
doi 10.3103/S1068373915060035
- V. V. Vorobyeva and E. M. Volodin, “Experimental Studies of Seasonal Weather Predictability Based on the INM RAS Climate Model,” Mathematical Models and Computer Simulations 13 (4), 571-578 (2021).
doi 10.1134/S2070048221040232
- V. M. Khan, E. N. Kruglova, V. A. Tishchenko, et al., “Verification of Seasonal Ensemble Forecasts Based on the INM-CM5 Earth System Model,” Russ. Meteorol. Hydrol. 49, 587-597 (2024).
doi 10.3103/S1068373924070033
- V. V. Vorobeva, E. M. Volodin, A. S. Gritsun, and M. A. Tarasevich, “Analysis of the Atmosphere and the Ocean Upper Layer State Predictability for up to 5 Years Ahead Using the INMCM5 Climate Model Hindcasts,” Russ. Meteorol. Hydrol. 48 (7), 581-589 (2023).
doi 10.3103/S106837392307004X
- M. A. Tarasevich and E. M. Volodin, “The Influence of Autumn Eurasian Snow Cover on the Atmospheric Dynamics Anomalies during the Next Winter in INMCM5 Model Data,” Supercomput. Front. Innov. 8 (4), 24-39 (2021).
doi 10.14529/jsfi210403
- P. N. Vargin, V. V. Bragina, E. M. Volodin, et al., “Investigation of the Predictability of the Arctic Stratospheric Polar Vortex Variability in the INMCM5 Seasonal Predictions,” Russ. Meteorol. Hydrol. 49, 700-710 (2024).
doi 10.3103/S1068373924080053
- V. V. Bragina, M. A. Tarasevich, and E. M. Volodin, “Prediction of the Arctic Sea Ice Characteristics for Summer Seasons Using the INM RAS Earth System Model,” Russ. Meteorol. Hydrol. 49, 681-690 (2024).
doi 10.3103/S106837392408003X
- Y. D. Resnyanskii, A. A. Zelen’ko, B. S. Strukov, et al., “Assessment of the Reproducibility of Oceanographic Fields in Retrospective Forecasts Using the INM-CM5 Earth System Model,” Russ. Meteorol. Hydrol. 49, 183-194 (2024).
doi 10.3103/S1068373924030014
- L. Garcia-Oliva, F. Counillon, I. Bethke, and N. Keenlyside, “Intercomparison of initialization methods for seasonal-to-decadal climate predictions with the NorCPM,” Clim. Dyn. 62, 5425-5444 (2024).
doi 10.1007/s00382-024-07170-w
- W. J. Merryfield, J. Baehr, L. Batté, et al., “Current and Emerging Developments in Subseasonal to Decadal Prediction,” Bull. Amer. Meteor. Soc. 101 (6), E869-E896 (2020).
doi 10.1175/BAMS-D-19-0037.1
- D. M. Smith, S. Cusack, A. W. Colman, et al., “Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model’’, Science 317, 796-799 (2007).
doi 10.1126/science.1139540
- A. Carrassi, R. J. T. Weber, V. Guemas, et al., “Full-field and anomaly initialization using a low-order climate model: a comparison and proposals for advanced formulations,” Nonlin. Processes Geophys. 21 (2), 521-537 (2014).
doi 10.5194/npg-21-521-2014
- H. Hersbach, B. Bell, P. Berrisford, et al., “The ERA5 global reanalysis,” Q.J.R. Meteorol. Soc. 146, 1999-2049, (2020).
doi 10.1002/qj.3803
- J. A. Carton, G. A. Chepurin, and L. Chen, “SODA3: A New Ocean Climate Reanalysis,” Journal of Climate 31 (17), 6967-6983 (2018).
doi 10.1175/JCLI-D-18-0149.1
- J. A. Carton, S. G. Penny, and E. Kalnay, “Temperature and Salinity Variability in the SODA3, ECCO4r3, and ORAS5 Ocean Reanalyses, 1993-2015’’, Journal of Climate 32 (8), 2277-2293 (2019).
doi 10.1175/JCLI-D-18-0605.1
- D. P. Mulholland, P. Laloyaux, K. Haines, et al., “Origin and Impact of Initialization Shocks in Coupled Atmosphere-Ocean Forecasts,” Monthly Weather Rev. 143 (11), 4631-4644 (2015).
doi 10.1175/MWR-D-15-0076.1
- J. E. Hoke and R. A. Anthes, “The Initialization of Numerical Models by a Dynamic-Initialization Technique,” Monthly Weather Review 104 (12), 1551-1556 (1976).
doi 10.1175/1520-0493(1976)104<1551: TIONMB>2.0.CO;2.
- R. Bilbao, S. Wild, P. Ortega, et al., “Assessment of a full-field initialized decadal climate prediction system with the CMIP6 version of EC-Earth,” Earth Syst. Dynam. 12 (1), 173-196 (2021).
doi 10.5194/esd-12-173-2021
- A. Düsterhus and S. Brune, “Decadal predictability of seasonal temperature distributions,” Geophysical Research Letters 51, e2023GL107838 (2024).
doi 10.1029/2023GL107838
- G. A. Meehl, L. Goddard, G. Boer, et al., “Decadal Climate Prediction: An Update from the Trenches,” Bull. Amer. Meteor. Soc. 95 (2), 243-267 (2014).
doi 10.1175/BAMS-D-12-00241.1
- E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability(Cambridge University Press, Cambridge, 2003).
doi 10.1017/CBO9780511802270
- APEC Climate Center.
https://apcc21.org/prediction/global/model?lang=en . Cited September 17, 2025.
- M. A. Tolstykh, R. Yu. Fadeev, V. V. Shashkin, et al., “The SLAV072L96 Model for Long-range Meteorological Forecasts,” Russ. Meteorol. Hydrol. 49, 576-586 (2024).
doi 10.3103/S1068373924070021
- W. J. Merryfield, W.-S. Lee, G. J. Boer, et al., “The Canadian Seasonal to Interannual Prediction System. Part I: Models and Initialization,” Monthly Weather Rev. 141 (8), 2910-2945 (2013).
doi 10.1175/MWR-D-12-00216.1
- S. G. Penny, et al., Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challenges, and Recommendations, WMO Tech. Rep. (World Meteorological Organization, 2017).
https://repository.library.noaa.gov/view/noaa/28431/. Cited September 17, 2025.
- A. J. Charlton-Perez, L. Ferranti and R. W. Lee, “The influence of the stratospheric state on North Atlantic weather regimes,” Q.J.R. Meteorol. Soc. 144, 1140-1151 (2018).
doi 10.1002/qj.3280
- J. Kidston, A. Scaife, S. Hardiman, et al., “Stratospheric influence on tropospheric jet streams, storm tracks and surface weather,” Nature Geoscience 8, 433-440 (2015).
doi 10.1038/ngeo2424
- J. W. Hurrell, “Influence of variations in extratropical wintertime teleconnections on northern hemisphere temperature,” Geophys. Res. Lett. 23 (6), 665-668 (1996).
doi 10.1029/96GL00459
- L. M. Polvani, L. Sun, A. H. Butler, et al., “Distinguishing Stratospheric Sudden Warmings from ENSO as Key Drivers of Wintertime Climate Variability over the North Atlantic and Eurasia,” Journal of Climate 30 (6), 1959-1969 (2017).
doi 10.1175/JCLI-D-16-0277.1
- E. M. Volodin and S. V. Kostrykin, “The aerosol module in the INM RAS climate model,” Russ. Meteorol. Hydrol. 41, 519-528 (2016).
doi 10.3103/S106837391608001X
- E. M. Volodin and V. N. Lykosov, “Parametrization of heat and moisture transfer in the soil-vegetation system for use in atmospheric general circulation models: 1. Formulation and simulations based on local observational data,” Izvestiya, Atmospheric and Oceanic Physics 34 (4), 405-416 (1998).
https://www.researchgate.net/publication/270586916_Parameterization_of_Heat_and_Moisture_Transfer_in_the_Soil-Vegetation_System_for_Use_in_Atmospheric_General_Circulation_Models_1_Formulation_and_Simulations_Based_on_Local_Observational_Data . Cited September 17, 2025.
- K. M. Terekhov, E. M. Volodin, and A. V. Gusev, “Methods and efficiency estimation of parallel implementation of the sigma-model of general ocean circulation,” Russ. J. Numer. Anal. Math. Modelling 26 (2), 189-208 (2011).
doi 10.1515/rjnamm.2011.011
- N. G. Yakovlev, “Reproduction of the large-scale state of water and sea ice in the Arctic Ocean in 1948-2002: Part I. Numerical Model,” Izvestiya, Atmospheric and Oceanic Physics 45 (3), 357-371 (2009).
doi 10.1134/S0001433809030098
- V. Ya. Galin, E. M. Volodin, and S. P. Smyshlyaev, “Atmospheric general circulation model of INM RAS with ozone dynamics,” Russian Meteorology and Hydrology 5, 7-15 (2003).
https://www.scopus.com/pages/publications/2442505832?inward . Cited September 17, 2025.
- G. Marchuk, Numerical Methods in Weather Prediction(Academic Press, New York-London, 1974).
doi 10.1016/B978-0-12-470650-7.X5001-4
- E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Ed. 2 (Springer Berlin, Heidelberg, 1996).
doi 10.1007/978-3-642-05221-7
- P. J. Telford, P. Braesicke, O. Morgenstern, and J. A. Pyle, “Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model,” Atmos. Chem. Phys. 8, 1701-1712 (2008).
doi 10.5194/acp-8-1701-2008
- N. G. Loeb, D. R. Doelling, H. Wang, et al., “Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product,” Journal of Climate 31 (2), 895-918 (2018).
doi 10.1175/JCLI-D-17-0208.1
- WMO Manual on the Global Data-processing and Forecasting System. Volume I (Annex IV to WMO Technical Regulations). Global Aspects, WMO-No. 485, Geneva, 2023.
https://library.wmo.int/idurl/4/35703 . Cited September 17, 2025.