DOI: https://doi.org/10.26089/NumMet.v26r320

Constructor of soil carbon dynamic models

Authors

  • George M. Faykin
  • Victor M. Stepanenko
  • Alexander I. Medvedev
  • Siumbel K. Shangareeva
  • Irina M. Ryzhova
  • Vladimir A. Romanenkov
  • Ilshat T. Khusniev

Keywords:

carbon cycle
dynamical system
numerical experiments

Abstract

This paper introduces a carbon cycle model constructor (CCMC) — a software framework for specifying and solving systems of equations in soil carbon cycle models. The CCMC is based on the structure of a generalized system of ordinary differential equations with a multiplicative representation of mass transfer rates between pools. Most known carbon cycle models found in the literature are special cases of this system. The current implementation allows users to select a model from established formulations (INMCM soil block, SOCS, RothC), provide external environmental state variables, and define a spatial–temporal grid to simulate the evolution of soil carbon content. The CCMC enables subject-matter experts in biology, ecology, soil science, and Earth system dynamics to utilize the implemented mathematical models without requiring specialized knowledge in computational mathematics or programming.



Downloads

Published

2025-08-26

Issue

Section

Methods and algorithms of computational mathematics and their applications

Authors

George M. Faykin

Victor M. Stepanenko

Alexander I. Medvedev

Siumbel K. Shangareeva

Irina M. Ryzhova

Vladimir A. Romanenkov

Ilshat T. Khusniev


References

  1. A. S. Komarov, O. G. Chertov, A. V. Mikhailov, et al., Modeling the Dynamics of Organic Matter in Forest Ecosystems (Nauka, Moscow, 2007) [in Russian].
  2. G. I. AAgren and E. Bosatta, “Reconciling Differences in Predictions of Temperature Response of Soil Organic Matter,” Soil Biol. Biochem. 34 (1), 129-132 (2002).
    doi 10.1016/S0038-0717(01)00156-0
  3. S. Piao, S. Sitch, P. Ciais, et al., “Evaluation of Terrestrial Carbon Cycle Models for Their Response to Climate Variability and to CO_2 Trends,” Glob. Chang. Biol. 19 (7), 2117-2132 (2013).
    doi 10.1111/gcb.12187
  4. A. Garsia, A. Moinet, C. Vazquez, et al., “The Challenge of Selecting an Appropriate Soil Organic Carbon Simulation Model: A Comprehensive Global Review and Validation Assessment,” Glob. Chang. Biol. 29 (20), 5760-5774 (2023).
    doi 10.1111/gcb.16896
  5. I. M. Ryzhova, V. A. Romanenkov, and V. M. Stepanenko, “Modern Development of Soil Organic Matter Dynamics Models (Review),” Moscow Univ. Soil Sci. Bull. 79 (4), 493-499 (2024).
    doi 10.3103/S0147687424700467
  6. K. Coleman and D. Jenkinson, “RothC-26.3 -- A Model for the Turnover of Carbon in Soil,” in Evaluation of Soil Organic Matter Models (Springer, Berlin, 1996), Vol. 38, pp. 237-246.
    doi 10.1007/978-3-642-61094-3_17
  7. S. J. Del Grosso, W. J. Parton, P. R. Adler, et al., “DayCent Model Simulations for Estimating Soil Carbon Dynamics and Greenhouse Gas Fluxes from Agricultural Production Systems,” in Managing Agricultural Greenhouse Gases (Elsevier, New York, 2012), pp. 241-250.
    doi 10.1016/b978-0-12-386897-8.00014-0
  8. M. A. Nadporozhskaya, S. S. Bykhovets, and E. V. Abakumov, “Application of the ROMUL Mathematical Model for Estimation of CO_2 Emission and Dynamics of Organic Matter in the Subantarctic Lithozems,” Eurasian Soil Sci. 55, 413-424 (2022).
    doi 10.1134/S1064229322040123
  9. I. M. Ryzhova, “Analysis of Soil Organic Matter Dynamics Based on Minimal Carbon Cycle Models,” in Soils are a Strategic Resource of Russia: Abstracts of the VIII Congress of the V.V. Dokuchaev Society of Soil Scientists and the School of Young Scientists on Soil Morphology and Classification (Syktyvkar, 2020-2022). Part 2. Moscow–-Syktyvkar: IB FITZ Komi NC UrO RAS, 2021. 130-131 [in Russian].
  10. S. L. Gilhespy, S. Anthony, L. Cardenas, et al., “First 20 Years of DNDC (DeNitrification DeComposition): Model Evolution,” Ecol. Model. 292, 51-62 (2014).
    doi 10.1016/j.ecolmodel.2014.09.004
  11. R. Z. Abramoff, B. Guenet, H. Zhang, et al., “Improved Global-Scale Predictions of Soil Carbon Stocks with Millennial Version 2,” Soil Biol. Biochem. 164, Article Number 108466 (2022).
    doi 10.1016/j.soilbio.2021.108466
  12. B. Tupek, A. Lehtonen, A. Yurova, et al., “Modelling Boreal Forest’s Mineral Soil and Peat C Dynamics with the Yasso07 Model Coupled with the Ricker Moisture Modifier,” Geosci. Model Dev. 17, 5349-5367 (2024).
    doi 10.5194/gmd-17-5349-2024
  13. V. N. Pavlova, Productivity of Grain Crops in Russia with Changes in Agro-Climatic Resources in the 20th and 21st Centuries , Doctoral Thesis in Geographical Sciences (Federal State Budgetary Institution, “VNIISHM’’, Moscow, 2021) [in Russian].
  14. R. A. Poluektov, S. M. Fintushal, I. V. Oparina, et al., “Agrotool -- A System for Crop Simulation,” Arch. Agron. Soil Sci. 48 (6), 609-635 (2002).
    doi 10.1080/0365034021000041597
  15. C. Nendel, “MONICA: A Simulation Model for Nitrogen and Carbon Dynamics in Agro-Ecosystems,” in Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia (Springer, Cham, 2014), pp. 389-405.
    doi 10.1007/978-3-319-01017-5_23
  16. J. W. Jones, G. Hoogenboom, C. H. Porter, et al., “The DSSAT Cropping System Model,” Eur. J. Agron. 18 (3-4), 235-265 (2003).
    doi 10.1016/S1161-0301(02)00107-7
  17. N. J. Hadiya, N. Kumar, and B. M. Mote, “Use of WOFOST Model in Agriculture - A Review,” Agric. Rev. 39 (3), 234-240 (2018).
    https://arccjournals.com/journal/agricultural-reviews/R-1691 . Cited July 27, 2025.
  18. M. J. Best, M. Pryor, D. B. Clark, et al., “The Joint UK Land Environment Simulator (JULES), Model Description -- Part 1: Energy and Water Fluxes,” Geosci. Model Dev. 4 (3), 677-699 (2011).
    doi 10.5194/gmd-4-677-2011
  19. D. B. Clark, L. M. Mercado, S. Sitch, et al., “The Joint UK Land Environment Simulator (JULES), Model Description - Part 2: Carbon Fluxes and Vegetation,” Geosci. Model Dev. 4 (3), 701-722, (2011).
    doi 10.5194/gmd-4-701-2011
  20. A. J. Wiltshire, E. J. Burke, S. E. Chadburn, et al., “JULES-CN: a Coupled Terrestrial Carbon-Nitrogen Scheme (JULES vn5.1),” Geosci. Model Dev. 14 (4), 2161-2186, (2021).
    doi 10.5194/gmd-14-2161-2021
  21. P. M. Cox, Description of the TRIFFID Dynamic Global Vegetation Model (Hadley Centre Technical Note 24, Met Office, UK, 2001).
    https://jules.jchmr.org/sites/default/files/2023-06/ JULES-HCTN-24.pdf . Cited July 27, 2025.
  22. K. W. Oleson, Y. J. Dai, G. B. Bonan, et al., Technical Description of the Community Land Model (CLM).Published by National Center for Atmospheric Research, Boulder, 2004.
  23. J. R. Melton, V. K. Arora, E. Wisernig-Cojoc, et al., “CLASSIC v1.0: The Open-Source Community Successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) -- Part 1: Model Framework and Site-Level Performance,” Geosci. Model Dev. 13 (6), 2825-2850 (2020).
    doi 10.5194/gmd-13-2825-2020
  24. A. Asaadi and V. K. Arora, “Implementation of Nitrogen Cycle in the CLASSIC Land Model,” Biogeosciences 18 (2), 669-706 (2021).
    doi 10.5194/bg-18-669-2021
  25. G. Krinner, N. Viovy, N. de Noblet-Ducoudré, et al., “A Dynamic Global Vegetation Model for Studies of the Coupled Atmosphere-Biosphere System,” Glob. Biogeochem. Cycles 19 (1), Article ID GB1015 (2005).
    doi 10.1029/2003GB002199
  26. S. Boussetta, G. Balsamo, G. Arduini, et al., “ECLand: The ECMWF Land Surface Modelling System,” Atmosphere 12 (6), Article Number 723 (2021).
    doi 10.3390/atmos12060723
  27. V. M. Stepanenko, A. I. Medvedev, V. Yu. Bogomolov, et al., “Land Surface Scheme TerM: the Model Formulation, Code Architecture and Applications,” Russ. J. Numer. Anal. Math. Model. 39 (6), 363-377 (2024).
    doi 10.1515/rnam-2024-0031
  28. E. M. Volodin, D. V. Blagodatskikh, V. V. Bragina, et al., “Computational Framework for the Earth System Modelling and the INM-CM6 Climate Model Implemented on Its Base,” Russ. J. Numer. Anal. Math. Model. 39 (6), 379-392 (2024).
    doi 10.1515/rnam-2024-0032
  29. S. V. Travova, V. M. Stepanenko, A. I. Medvedev, et al., “Quality of Soil Simulation by the INM RAS–MSU Soil Scheme as a Part of the SL-AV Weather Prediction Model,” Russ. Meteorol. Hydrol. 47 (3), 159-173 (2022).
    doi 10.3103/S1068373922030013
  30. X. Yin and P. C. Struik, “C_3 and C_4 Photosynthesis Models: An Overview from the Perspective of Crop Modelling,” NJAS: Wagening. J. Life Sci. 57 (1), 27-38 (2009).
    doi 10.1016/J.NJAS.2009.07.001
  31. G. D. Farquhar, S. von Caemmerer, and J. A. Berry, “A Biochemical Model of Photosynthetic CO_2 Assimilation in Leaves of C_3 Species,” Planta 149 (1), 78-90 (1980).
    doi 10.1007/BF00386231
  32. Network Common Data Form (NetCDF).
    https://www.unidata.ucar.edu/software/netcdf/. Cited July 27, 2025.
  33. Geographic Network Laboratory
    https://www.vniia-pr.ru/laboratorii/otdl-geoseti/lab-geogr-seti/. Cited July 27, 2025.
  34. H. Hersbach, B. Bell, P. Berrisford, et al., “ERA5 Hourly Data on Single Levels from 1940 to Present,” Copernicus Climate Change Service (C3S). Climate Data Store (CDS) (2023).
    doi 10.24381/cds.adbb2d47