Structure-oriented smoothing for wave propagation modelling by beam method with frequency dependence
Authors
-
Aleksandr D. Stein
-
Maksim I. Protasov
Keywords:
structure–oriented smoothing
frequency dependence
smoothing
Lomax smoothing
anisotropic diffusion
Fresnel zone
Gauss smoothing
Abstract
This paper considers an empirical method for obtaining a frequency-dependent velocity model using structure-oriented smoothing. Smoothing is performed depending on the source position, frequency, and time field. Three smoothing methods are implemented: smoothing along a locally flat wavefront, smoothing by anisotropic diffusion and volumetric smoothing in the Fresnel zone. Anisotropic diffusion smoothing time is compared with the frequency of the smoothing in the Fresnel zone. A comparison of smoothing methods is carried out, showing that volumetric smoothing in the Fresnel zone provides the most stable solution.
Section
Methods and algorithms of computational mathematics and their applications
References
- M. J. Woodward, “Wave-Equation Tomography,” Geophysics 57 (1), 15-26 (1992).
doi 10.1190/1.1443179
- T. L. Foreman, “An Exact Ray Theoretical Formulation of the Helmholtz Equation,” J. Acoust. Soc. Am. 86 (1), 234-246 (1989).
doi 10.1121/1.398339
- B. Biondi, “Solving the Frequency-Dependent Eikonal Equation,” 62nd Annual Int. SEG Meeting Expan. Abstr. 11, 1315-1319 (1992).
doi 10.1190/1.1821982
- V. uCerven’y and J. E. P. Soares, “Fresnel Volume Ray Tracing,” Geophysics 57 (7), 902-915 (1992).
doi 10.1190/1.1443303
- M. I. Protasov and K. S. Osipov, “Frequency Dependent Ray Tracing for Irregular Boundaries,” Seismic Technol. 11 (3), 1-11 (2014).
- A. Lomax, “The Wavelength-Smoothing Method for Approximating Broad-Band Wave Propagation through Complicated Velocity Structures,” Geophys. J. Int. 117 (2), 313-334 (1994).
doi 10.1111/J.1365-246X.1994.TB03935.X
- D. A. Neklyudov and M. I. Protasov, “Frequency Dependent qP-Lomax Rays in Three-Dimensional Weak TTI Media,” Russ. J. Geophys. Technol. 2, 40-54 (2024).
doi 10.18303/2619-1563-2024-2-40
- M. Kuwahara, K. Hachimura, S. Eiho, and M. Kinoshita, “Processing of RI-Angiocardiographic Images,” in Digital Processing of Biomedical Images (Springer, Boston, 1976), pp. 187-202.
doi 10.1007/978-1-4684-0769-3_13
- M. Nagao and T. Matsuyama, “Edge Preserving Smoothing,” Comput. Graphics Image Process. 9 (4), 394-407 (1979).
doi 10.1016/0146-664x(79)90102-3
- P. Perona and J. Malik, “Scale-Space and Edge Detection Using Anisotropic Diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12 (7), 629-639 (1990).
doi 10.1109/34.56205
- J. Weickert, Anisotropic Diffusion in Image Processing (Teubner, Stuttgart, 1998).
https://isbnsearch.org/isbn/9783519026068 . Cited August 23, 2025.
- W. Wang, J. Gao, K. Li, et al., “Structure-Oriented Gaussian Filter for Seismic Detail Preserving Smoothing,” in 16th IEEE Int. Conf. on Image Processing, Cairo, Egypt, November 7-10, 2009 , pp. 601-604.
doi 10.1109/icip.2009.5413869
- J. Rickett and S. Fomel, A Second-Order Fast Marching Eikonal Solver , Stanford Exploration Project, Technical Report No. 100, 1999. pp. 287-293.
- Madagascar main page.
https://ahay.org/index.php/Main_Page . Cited August 23, 2025.
- G. C. Fehmers and C. F. W. Höcker, “Fast Structural Interpretation with Structure-Oriented Filtering,” Geophysics 68 (4), 1286-1293 (2003).
doi 10.1190/1.1598121
- D. Hale, “Structure-Oriented Smoothing and Semblance,” Center for Wave Phenomena Report 635, 261-270 (2009).
- G. Yao, N. V. da Silva, and D. Wu, “Reflection-Waveform Inversion Regularized with Structure-Oriented Smoothing Shaping,” Pure Appl. Geophys. 176 (1), 5315-5335 (2019).
doi 10.1007/s00024-019-02265-6
- L. Luo, Y. Rao, Z. Zhao, and J. Zhang, “Adaptive Structure-Based Full-Waveform Inversion,” Geophysics 89 (3), R303-R313 (2024).
doi 10.1190/GEO2023-0273.1
- W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992).
https://isbnsearch.org/isbn/0521431085 . Cited August 23, 2025.