DOI: https://doi.org/10.26089/NumMet.v26r434

Computational efficiency and adaptation of radiation transfer module within Large-eddy simulation model

Authors

  • Andrey V. Debolskiy
  • Evgeny V. Mortikov
  • Aleksei A. Poliukhov

Keywords:

Large-eddy simulation
atmospheric boundary layer
radiative transfer

Abstract

This paper examines the results of integrating the Rapid Radiative Transfer Model for GCMs (RRTMG) into the Large-Eddy simulation model  developed by the Lomonosov Moscow State University Research Computing Center (RCC MSU). To test the integrated radiative transfer module, we conducted conduct analysis of the influence of turbulent aerosol particle transport on the diurnal dynamics of the atmospheric boundary layer under clear-sky conditions and in experiments modeling cold air bursts in the Arctic. A study of the sensitivity of the modeling results to the synchronization frequency of the radiative module with the dynamics core of the model revealed that the modeling results are within the ensemble spread for synchronization times much shorter than the characteristic turbulent time of the flow. This finding coupled with an analysis of the scalability of the overall computational algorithm, demonstrates that the combined models can be effectively applied to numerical analysis of direct and indirect aerosols effects, as well as to modeling cloud feedbacks.



Downloads

Published

2025-11-27

Issue

Section

Methods and algorithms of computational mathematics and their applications

Authors

Andrey V. Debolskiy

Evgeny V. Mortikov

Aleksei A. Poliukhov


References

  1. J. Slater, J. Tonttila, G. McFiggans, et al., “Using a Coupled Large-Eddy Simulation–Aerosol Radiation Model to Investigate Urban Haze: Sensitivity to Aerosol Loading and Meteorological Conditions,” Atmospheric Chemistry and Physics 20 (20), 11893-11906 (2020).
    doi 10.5194/acp-20-11893-2020
  2. T. Su, Z. Li, Y. Zheng, et al., “Aerosol-Boundary Layer Interaction Modulated Entrainment Process,” NPJ Climate and Atmospheric Science 5 (1), Article Number 64 (2022).
    doi 10.1038/s41612-022-00283-1
  3. E. Barbaro, J. Vilá-Guerau de Arellano, M. C. Krol, and A. A. M. Holtslag, “Impacts of Aerosol Shortwave Radiation Absorption on the Dynamics of an Idealized Convective Atmospheric Boundary Layer,” Boundary-Layer Meteorology 148 (1), 31-49 (2013).
    doi 10.1007/s10546-013-9800-7
  4. M. Costa-Surós, O. Sourdeval, C. Acquistapace, et al., “Detection and Attribution of Aerosol–Cloud Interactions in Large-Domain Large-Eddy Simulations with the ICOsahedral Non-Hydrostatic Model,” Atmospheric Chemistry and Physics 20 (9), 5657-5678 (2020).
    doi 10.5194/acp-20-5657-2020
  5. M.-L. Lu and J. H. Seinfeld, “Effect of Aerosol Number Concentration on Cloud Droplet Dispersion: A Large‐Eddy Simulation Study and Implications for Aerosol Indirect Forcing,” Journal of Geophysical Research: Atmospheres 111 (D02207), 1-16 (2006).
    doi 10.1029/2005JD006419
  6. H. Xue and G. Feingold, “Large-Eddy Simulations of Trade Wind Cumuli: Investigation of Aerosol Indirect Effects,” Journal of the Atmospheric Sciences 63 (6), 1605-1622 (2006).
    doi 10.1175/JAS3706.1
  7. B. T. Johnson, K. P. Shine, and P. M. Forster, “The Semi‐Direct Aerosol Effect: Impact of Absorbing Aerosols on Marine Stratocumulus,” Q.J.R. Meteorol. Soc. 130 (599), 1407-1422 (2004).
    doi 10.1256/qj.03.61
  8. R. J. Herbert, N. Bellouin, E. J. Highwood, and A. A. Hill, “Diurnal Cycle of the Semi-Direct Effect From a Persistent Absorbing Aerosol Layer over Marine Stratocumulus in Large-Eddy Simulations,” Atmospheric Chemistry and Physics 20 (3), 1317-1340 (2020).
    doi 10.5194/acp-20-1317-2020
  9. K. Ding, X. Huang, A. Ding, et al., “Aerosol-Boundary-Layer-Monsoon Interactions Amplify Semi-Direct Effect of Biomass Smoke on Low Cloud Formation in Southeast Asia,” Nature communications 12 (1), Article Number 6416 (2021).
    doi 10.1038/s41467-021-26728-4
  10. E. Erfani, P. Blossey, R. Wood, et al., “Simulating Aerosol Lifecycle Impacts on the Subtropical Stratocumulus‐to‐Cumulus Transition Using Large‐Eddy Simulations,” Journal of Geophysical Research: Atmospheres 127 (21), e2022JD037258 (2022).
    doi 10.1029/2022JD037258
  11. T. Yamaguchi, G. Feingold, J. Kazil, and A. McComiskey, “Stratocumulus to Cumulus Transition in the Presence of Elevated Smoke Layers,” Geophysical Research Letters 42 (23), 10478-10485 (2015).
    doi 10.1002/2015GL066544
  12. R. Pincus and B. Stevens, “Monte Carlo Spectral Integration: A Consistent Approximation for Radiative Transfer in Large Eddy Simulations,” J. Adv. Model. Earth Syst. 1 (2), 1-9 (2009).
    doi 10.3894/JAMES.2009.1.1
  13. P. Krč, J. Resler, M. Sühring, et al., “Radiative Transfer Model 3.0 Integrated into the PALM Model System 6.0,” Geosci. Model Dev. Discussions 14 (5), 3095-3120 (2021).
    doi 10.5194/gmd-14-3095-2021
  14. E. J. Mlawer, S. J. Taubman, P. D. Brown, et al., “Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-k Model for the Longwave,” Journal of Geophysical Research: Atmospheres 102 (D14), 16663-16682 (1997).
    doi 10.1029/97JD00237
  15. R. J. Hogan and A. Bozzo, “A Flexible and Efficient Radiation Scheme for the ECMWF Model,” Journal of Advances in Modeling Earth Systems 10 (8), 1990-2008 (2018).
    doi 10.1029/2018MS001364
  16. C. Lac, J.-P. Chaboureau, V. Masson, et al., “Overview of the Meso-NH Model Version 5.4 and Its Applications,” Geosci. Model Dev. 11 (5), 1929-1969 (2018).
    doi 10.5194/gmd-11-1929-2018
  17. A. Dipankar, B. Stevens, R. Heinze, et al., “Large Eddy Simulation Using the General Circulation Model ICON,” J. Adv. Model. Earth Syst. 7 (3), 963-986 (2015).
    doi 10.1002/2015MS000431
  18. D. Stokowski and W. R. Cotton, The Addition of the Direct Radiative Effect of Atmospheric Aerosols into the Regional Atmospheric Modeling System (Colorado State University, Department of Atmospheric Science, paper No. 764, Fort Collins, Colorado, 2005).
  19. J. Y. Harrington, The Effects of Radiative and Microphysical Processes on Simulated Warm and Transition Season Arctic Stratus (Colorado State University, Colorado, 1997).
  20. N. Brown, M. Weiland, A. Hill, et al., A Highly Scalable Met Office NERC Cloud Model arXiv preprint (2020).
    doi 10.48550/arXiv.2009.12849
  21. J. M. Edwards and A. Slingo, “Studies with a Flexible New Radiation Code. I: Choosing a Configuration for a Large‐Scale Model,” Q.J.R. Meteorol. Soc. 122 (531), 689-719 (1996).
    doi 10.1002/qj.49712253107
  22. J. Tonttila, Z. Maalick, T. Raatikainen, et al., “UCLALES-SALSA v1.0: a Large-Eddy Model with Interactive Sectional Microphysics for Aerosol, Clouds and Precipitation,” Geoscientific Model Development 10 (1), 169-188 (2017).
    doi 10.5194/gmd-10-169-2017
  23. Q. Fu and K. N. Liou, “Parameterization of the Radiative Properties of Cirrus Clouds,” Journal of the Atmospheric Sciences 50 (13), 2008-2025 (2002).
  24. T. Heus, C. C. van Heerwaarden, H. J. J. Jonker, et al., “Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and Overview of Its Applications,” Geosci. Model Dev. 3 (2), 415-444 (2010).
    doi 10.5194/gmd-3-415-2010
  25. E. V. Tkachenko, A. V. Debolskiy, and E. V. Mortikov, “Intercomparison of Subgrid Scale Models in Large-Eddy Simulation of Sunset Atmospheric Boundary Layer Turbulence: Computational Aspects,” Lobachevskii Journal of Mathematics 42 (7), 1580-1595 (2021).
    doi 10.1134/S1995080221070234
  26. E. Kadantsev, E. Mortikov, and S. Zilitinkevich, “The Resistance Law for Stably Stratified Atmospheric Planetary Boundary Layers,” Q.J.R. Meteorol. Soc. 147 (737), 2233-2243 (2021).
    doi 10.1002/qj.4019
  27. A. V. Debolskiy, E. V. Mortikov, A. V. Glazunov, and C. Lüpkes, “Evaluation of Surface Layer Stability Functions and Their Extension to First Order Turbulent Closures for Weakly and Strongly Stratified Stable Boundary Layer,” Boundary-Layer Meteorology 187, 73-93 (2023).
    doi 10.1007/s10546-023-00784-3
  28. E. V. Mortikov, E. M. Gashchuk, and A. V. Debolskiy, “GPU-Based Large-Eddy Simulation of Mixed-Phased Clouds,” Supercomputing Frontiers and Innovations (2025) in preparation.
  29. A. Glazunov, Ü. Rannik, V. Stepanenko, et al., “Large-Eddy Simulation and Stochastic Modeling of Lagrangian Particles for Footprint Determination in the Stable Boundary Layer,” Geoscientific Model Development 9 (9), 2925-2949 (2016).
    doi 10.5194/gmd-9-2925-2016
  30. E. V. Mortikov, A. V. Glazunov, and V. N. Lykosov, “Numerical Study of Plane Couette Flow: Turbulence Statistics and the Structure of Pressure-Strain Correlations,” Russian Journal of Numerical Analysis and Mathematical Modelling 34 (2), 119-132 (2019).
    doi 10.1515/rnam-2019-0010
  31. E. Bou-Zeid, C. Meneveau, and M. Parlange, “A Scale-Dependent Lagrangian Dynamic Model for Large Eddy Simulation of Complex Turbulent Flows,” Physics of Fluids 17 (2), Article number 025105 (2005).
    doi 10.1063/1.1839152
  32. C. Meneveau, T. S. Lund, and W. H. Cabot, “A Lagrangian Dynamic Subgrid-Scale Model of Turbulence,” Journal of Fluid Mech. 319 (1), 353-385 (1996).
    doi 10.1017/S0022112096007379
  33. E. V. Mortikov, “Numerical Simulation of the Motion of an Ice Keel in a Stratified Flow,” Izvestiya, Atmospheric and Oceanic Physics 52 (1), 108-115 (2016).
    doi 10.1134/S0001433816010072
  34. Y. Morinishi, T. S. Lund, O. V. Vasilyev, and P. Moin, “Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow,” Journal of Computational Physics 143 (1), 90-124 (1998).
    doi 10.1006/jcph.1998.5962
  35. D. L. Brown, R. Cortez, and M. L. Minion, “Accurate Projection Methods for the Incompressible Navier-Stokes Equations,” Journal of Computational Physics 168 (2), 464-499 (2001).
    doi 10.1006/jcph.2001.6715
  36. Y. Zang, R. L. Street, and J. R. Koseff, “A Dynamic Mixed Subgrid‐Scale Model and Its Application to Turbulent Recirculating Flows,” Physics of Fluids A: Fluid Dynamics 5 (12), 3186-3196 (1993).
    doi 10.1063/1.858675
  37. T. S. Lund, “On the Use of Discrete Filters for Large Eddy Simulation,” Center for Turbulence Research, Annual Research Briefs, 83-95 (1997).
  38. V. V. Voevodin, A. V. Debolskiy, and E. V. Mortikov, “Facilitating the Process of Performance Analysis of HPC Applications,” Lobachevskii Journal of Mathematics 44 (8), 3177-3189 (2023).
    doi 10.1134/S1995080223080589
  39. S. A. Clough, M. W. Shephard, E. J. Mlawer, et al., “Atmospheric Radiative Transfer Modeling: A Summary of the AER Codes,” Journal of Quantitative Spectroscopy and Radiative Transfer 91 (2), 233-244 (2005).
    doi 10.1016/j.jqsrt.2004.05.058
  40. J. Flemming, A. Benedetti, A. Inness, et al., “The CAMS Interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for 2003-2015,” Atmos. Chem. Phys. 17 (3), 1945-1983 (2017).
    doi 10.5194/acp-17-1945-2017
  41. S. B. Sieron, E. E. Clothiaux, F. Zhang, et al., “Comparison of Using Distribution‐Specific Versus Effective Radius Methods for Hydrometeor Single‐Scattering Properties for All‐Sky Microwave Satellite Radiance Simulations with Different Microphysics Parameterization Schemes,” J. Geophys. Res. Atmos. 122 (13), 7027-7046 (2017).
    doi 10.1002/2017JD026494
  42. Y. Fouquart, B. Bonnel, G. Brogniez, et al., “Observations of Saharan Aerosols: Results of ECLATS Field Experiment. Part II: Broadband Radiative Characteristics of the Aerosols and Vertical Radiative Flux Divergence,” Journal of Applied Meteorology and Climatology 26 (1), 38-52 (1987).
    doi 10.1175/1520-0450(1987)026<0038: OOSARO>2.0.CO;2.
  43. O. Dubovik, B. Holben, T. F. Eck, et al., “Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations,” Journal of the Atmospheric Sciences 59 (3), 590-608 (2002).
    doi 10.1175/1520-0469(2002)059<0590: VOAAOP>2.0.CO;2.
  44. M. Hess, P. Koepke, and I. Schult, “Optical Properties of Aerosols and Clouds: The Software Package OPAC,” Bulletin of the American Meteorological Society 79 (5), 831-844 (1998).
    doi 10.1175/1520-0477(1998)079<0831: OPOAAC>2.0.CO;2.
  45. A. A. Lacis, M. I. Mishchenko, and B. E. Carlson, “Parameterization of Hygroscopic Aerosols in a Climate GCM,” Proceedings of the Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting 2002. St. Petersburg, FL.
  46. Y. X. Hu and K. Stamnes, “An Accurate Parameterization of the Radiative Properties of Water Clouds Suitable for Use in Climate Models,” Journal of Climate 6 (4), 728-742 (1993).
    doi 10.1175/1520-0442(1993)006<0728: AAPOTR>2.0.CO;2.
  47. J. R. Key and A. J. Schweiger, “Tools for Atmospheric Radiative Transfer: Streamer and FluxNet,” Computers and Geosciences 24 (5), 443-451 (1998).
    doi 10.1016/S0098-3004(97)00130-1
  48. A. A. Poliukhov and D. V. Blinov, “Aerosol Effects on Temperature Forecast in the COSMO-Ru Model,” Russian Meteorology and Hydrology 46 (1), 19-27 (2021).
    doi 10.3103/S1068373921010039
  49. A. Poliukhov, A. Debolskiy, and E. Mortikov, “The Effects of Long-Term Variability of the Aerosol on the Convective Atmospheric Boundary Layer in Moscow,” IOP Conference Series: Earth and Environmental Science 1522, Article Number 012033 (2025).
    doi 10.1088/1755-1315/1522/1/012033
  50. F. Tornow, A. M. Fridlind, A. S. Ackerman, et al., “COMBLE-MIP: A Model Intercomparison to Understand LES and SCM Uncertainty in Marine Cold-Air Outbreaks over the Norwegian Sea,” In AGU Fall Meeting Abstracts 2023, Poster No. 2007, Article ID. A51H-2007 (2023).