DOI: https://doi.org/10.26089/NumMet.v26r437

Three-dimensional time-dependent multiphase model of local melting processes for stationary and moving continuous bodies

Authors

  • Ratmir S. Rublya
  • Sergei A. Nikiforov
  • Ivan V. Shvarts
  • Albert K. Gilmutdinov

Keywords:

multiphase model, local melting, damping source term, phase transition, computational experiment, adaptive mesh refinement, finite volume method, Ansys Fluent, user-defined function (UDF)

Abstract

A multiphase mathematical model has been developed and verified to describe the dynamics of stationary and moving continuous bodies undergoing local melting under gravity and surface tension forces. The key element is a modified acceleration source that enables imposing target translational or rotational velocities on the object. Its action smoothly diminishes within the first-order phase transition zone and becomes spatially localized near the phase interface through the introduction of temperature-dependent and phase-based multipliers.

The model is adapted to work with arbitrary volumetric heat sources. A series of computational experiments established optimal ranges for the calibration parameters, ensuring a balance between high accuracy, numerical stability, and acceptable computational cost. Verification was confirmed through agreement with analytical solutions. The model is applicable for numerical analysis of welding, cladding, induction melting, and similar processes.



Downloads

Published

2025-12-12

Issue

Section

Methods and algorithms of computational mathematics and their applications

Authors

Ratmir S. Rublya

https://kai.ru/web/en

• Senior Lecturer

Sergei A. Nikiforov

https://kai.ru/web/en

• Senior Lecturer

Ivan V. Shvarts

https://kai.ru/web/en

• Senior Lecturer

Albert K. Gilmutdinov

D.Sc. in Physics and Mathematics, professor, Head of the Department of Laser and Additive Technologies

• Professor, Head of Department


References

  1. P. V. Trusov, Introduction to Mathematical Modeling(Logos, Moscow, 2007) [in Russian].
  2. D. Chen, G. Li, P. Wang, Zh. Zeng, Yu. Tang, “Numerical simulation of melt pool size and flow evolution for laser powder bed fusion of powder grade Ti6Al4V,” Finite Elements in Analysis and Design 223, Article Number 103971 (2023).
    doi 10.1016/j.finel.2023.103971
  3. M. Liu, Zh. Liu, B. Li, F. Qi, W. Peng, “Numerical simulation on melt pool and solidification in the direct energy deposition process of GH3536 powder superalloy,” Journal of Materials Research and Technology, 26, 5626–5637 (2023).
    doi 10.1016/j.jmrt.2023.08.252
  4. J. Chu, Xi. Wang, Y. Ma, H. Liu, “Numerical simulation of melt pool formation in laser transmission joining PET with microtextured surface pretreated SUS304 stainless steel,” International Journal of Heat and Mass Transfer, 216, Article Number 124560 (2023).
    doi 10.1016/j.ijheatmasstransfer.2023.124560
  5. H. Xiang, J. Chen, “Integrated simulation framework for metal additive manufacturing: Powder deposition, melt pool dynamics and microstructure evolution with example of Ti-6Al-4V,” Materials Today Communications, 47, Article Number 113206 (2025).
    doi 10.1016/j.mtcomm.2025.113206
  6. S. Sharma, V. Mandal, S. A. Ramakrishna, J. Ramkumar, “Numerical simulation of melt pool oscillations and protuberance in pulsed laser micro melting of SS304 for surface texturing applications,” Journal of Manufacturing Processes, 39, 282–294 (2019).
    doi 10.1016/j.jmapro.2019.02.022
  7. S. Spitans, H. Franz, B. Sehring, S. Bogner, “EIGA-type electrode melting for highest-purity cast parts,” Magnetohydrodynamics, 59 (3/4), 347–355 (2023).
    doi 10.22364/mhd.59.3-4.7
  8. S. A. Nikiforov, I. V. Shvarts, R. S. Rublia, A. S. Melnikov, A. I. Gorunov, A. Kh. Gilmutdinov, “Multiphase three-dimensional model of the AISI 316L steel laser point heating and melting in the ultrasonic field,” Engineering Journal: Science and Innovation, 7 (151) (2024).
    doi 10.18698/2308-6033-2024-7-2369
  9. C. W. Hirt, B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” Journal of Computational Physics, 39 (1), 201–225 (1981).
    doi 10.1016/0021-9991(81)90145-5
  10. J. U. Brackbill, D. B. Kothe, C. Zemach, “A continuum method for modeling surface tension,” Journal of Computational Physics, 100 (2), 335–354 (1992).
    doi 10.1016/0021-9991(92)90240-Y
  11. S. A. Nikiforov, I. V. Shvarts, A. I. Gorunov, A. Kh. Gilmutdinov, “Study of the of ultrasound vibrations influence on the liquid metal flow structure and shape of the AISI 316L stainless steel melt pool,” Engineering Journal: Science and Innovation, 11 (155) (2024).
    doi 10.18698/2308-6033-2024-11-2398
  12. S. D. Proell, W. A. Wall, Ch. Meier, “On phase change and latent heat models in metal additive manufacturing process simulation,” Advanced Modeling and Simulation in Engineering Sciences, 7, 24 (2020).
    doi 10.1186/s40323-020-00158-1
  13. Ch. Reichl, S. Both, Ph. Mascherbauer, J. Emhofer, “Comparison of Two CFD Approaches Using Constant and Temperature Dependent Heat Capacities during the Phase Transition in PCMs with Experimental and Analytical Results,” Processes, 10, 302 (2022).
    doi 10.3390/pr10020302
  14. S. A. Nikiforov, I. V. Shvarts, A. Kh. Gilmutdinov, A. I. Gorunov, “Study of the melt pool shape under laser treatment of AISI 316L steel taking into account Marangoni convection effect,” Engineering Journal: Science and Innovation.2, 134 (2023).
    doi 10.18698/2308-6033-2023-2-2248