A computer tomography problem in wave approximation


  • A.V. Goncharsky
  • S.Y. Romanov


компьютерное моделирование
обратные задачи сейсмики и акустики
параллельные вычисления
томографический подход
уравнение Гельмгольца


This paper deals with the development of methods and algorithms for solving direct and inverse engineering seismic problems on parallel-architecture clusters. The methods employed are based on tomography approaches in the framework of a scalar wave hyperbolic-type model with consideration of a special experiment design. The use of parallel-programming technology with powerful computer clusters allows the solution speed and problem dimension to be increased by several orders of magnitude, making it possible to compute direct and inverse problems over a wide range of parameters. The computer simulations reported demonstrate high efficiency and scalability of the software developed. The work was supported by the Russian Foundation for Basic Research (05-01-08068).





Section 1. Numerical methods and applications

Author Biographies

A.V. Goncharsky

S.Y. Romanov


  1. Bakushinsky A.B., Goncharsky A.V. Ill-posed problems. Theory and applications. Dordrect: Kluwer Academic Publ., 1994.
  2. Yilmaz O. Seismic data processing. Tulsa: Society of Exploration Geophysicists, 1987.
  3. Baysal E., Kosloff D.D., Sherwood J.W. C. Reverse time migration // Geophysics. 1983. 48. 1514-1524.
  4. Natterer F. The mathematics of computerized tomography. Stuttgart: Wiley,&,Sons, 1986.
  5. Тихонов А.Н. О регуляризации некорректно поставленных задач // ДАН. 1963. 153, № 1. 49-52.
  6. Bakushinsky A.B., Goncharsky A.V., Romanov S.Yu., Seatzu S. On the identification of velocity in seismic and in acoustic sounding.
  7. Гончарский А.В., Романов С.Ю. Об одной трехмерной задаче диагностики в волновом приближении // ЖВМ и МФ. 2000. 40, № 9. 1364-1367.
  8. Головина C.Г., Романов С.Ю., Степанов В.В. Об одной обратной задаче сейсмики // Вестник МГУ. Вычисл. матем. и киберн. 1994. № 4. 16-21.