Evaluation of many-electron atomic integrals using a Hylleraas-type basis

Authors

  • S.Ya. Ishchenko

Keywords:

многочастичные интегралы
базис хиллераасовского типа
ускорение сходимости

Abstract

A new version of the standard series expansion algorithm for calculation of one-center many-particle correlation integrals is proposed. The performance of this algorithm is considerably increased due to a special order of computation of auxiliary $W$-integrals using recurrent formulas to express one integral in terms of another integral. This technique allows one to compute an array of $W$-functions and to retain the numerical accuracy of computations by evaluating a small number of its components with the use of infinite series. Evaluation of $W$-integrals by infinite series and extrapolation procedures are also improved.


Published

2006-03-03

Issue

Section

Section 1. Numerical methods and applications

Author Biography

S.Ya. Ishchenko


References

  1. James A.M., Coolidge A.S. On the ground state of litium // Phys. Rev. 1936. 49. 688-695.
  2. Ohrn Y., Nordling J. Calculation of some atomic integrals // J. Chem. Phys. 1963. 39. 1864-1871.
  3. Larson S. Calculation of 愦灭;circ2S state of litium atom using wavefunctions of Hylleraas type // Phys. Rev. 1968. 169. 49-54.
  4. Berk A., Bhatia A.K., Jumker B.R., Temkin A. Projection operator calculation of lowest e-He resonance // Phys. Rev. 1986. T. A 34. 4591-4597.
  5. Drake G.W. F., Yan Z.C. Asymptotic-expansion method for evaluation of correlated three-electron integrals // Phys. Rev. 1995. T. A 52, N 5. 3681-3685.
  6. Frolov A.M., Smith V.H. Exact finite series for few-body auxiliary functions // Int. Journal Quantum Chem. 1997. 62, N 1. 269-278.
  7. Pelzl P.J., King F.W. Convergence acceleration approach for the high-precision evaluation of three-electron correlated integrals // Phys. Rev. 1998. T. E 57, N 6. 7268-7273.
  8. King F.W. Analysis of some integrals arising in three-electron problem // Phys. Rev. 1991. T. A 44. 7108-7133.
  9. Pelzl P.J, Smethells G.J., King F.W. Improvements of the application of convergence accelerators for evaluation of some three-electron atomic integrals // Phys. Rev. 2002. T. E 65. 036707-1- 036718-11.
  10. Forras I., King F.W. Evaluation of some atomic three-electron problem using convergence accelerators // Phys. Rev. 1994. T. A 49. 1637-1645.
  11. Frolov A.M., Balley D.H. Highly accurate evaluation of few-body auxiliary functions and four-body integrals // J. Phys. B. 2003. 36. 1857-1867.
  12. McKoy V. Calculation of atomic integrals containing r_12, r_13, r23 // J. Chem. Phys. 1965. 42. 2959.
  13. Юцис А.П., Левинсон И.Б., Ванагас В.В. Математический аппарат теории момента количества движения. Вильнюс: Гос. изд-во политической и научной литературы, 1960.
  14. Smolenskii E.A., Aristov P.A., Ishchenko S.Ya., Maximoff S.N. Role of wavefunction nodal surfaces in interpretation of Pauli principle // J. Chem. in Computer Sci. 1996. 36, N 5. 402-408.
  15. Harris F.E. Analytic evaluation of three-electron atomic integrals with Slater wave functions // Phys. Rev. 1997. T. A 55. 1820-1831.
  16. Fromm D.N., Hill R.N. Analytic evaluation of three-electron integrals. 1987. 36. 1013-1044.
  17. Remeddi E. Analytic value of the atomic three-electron correlated integral with Slater wave functions // Phys. Rew. 1991. T. A 44. 5492-5502.