A finite-volume TVD Riemann solver for the 2D shallow water equations
Keywords:
операторные уравнения
некорректные задачи
метод регуляризации
обобщенный принцип невязки
метод коллокации
Abstract
The problem of constructing an "optimal" algorithm for finding the operator values on the solution of an operator equation with exact and approximate initial data is considered. The structure of such an algorithm is discussed. The order-of-magnitude optimality of several well-known methods for solving ill-posed problems is proved (in particular, the regularization method with regularization parameter choice on the basis of the residual principle, the residual operator method, and the method of quasisolutions are analyzed for various ways of apriori information specification). Two examples are examined. The work was supported by the Russian Foundation for Basic Research (04-01-00026).
Section
Section 1. Numerical methods and applications
References
- Уйзем Дж. Линейные и нелинейные волны. М.: Мир, 1977.
- Toro E. Riemann problems and the WAF method for solving the two-dimensional shallow water equations // Philosophical Trans. Royal Soc. 1992. T. A 338. 43-68.
- Самарский А.А., Попов Ю.П. Разностные методы решения задач газовой динамики. М.: Наука, 2004.
- Ваннер Г., Нерсетт С., Хайрер Э. Решение обыкновенных дифференциальных уравнений. М.: Мир, 1990.
- Barth T.J. Aspects of unstructured grids and finite-volume solvers for the Euler and Navier- Stokes equations. Moffet Field: NASA Ames Research Center, 1998.
- Флетчер К. Вычислительные методы в динамике жидкостей. М.: Мир, 1991.
- Leonard B.P. The ultimate conservative difference scheme applied to unsteady one-dimensional advection // Comp. Methods in Applied Mechanics and Engineering. 1991. 88. 17-74.
- Soulis J.V. Computation of two-dimensional dam-break flood flows // International Journal of Numerical Methods in Fluids. 1992. 14, N 6. 631-664.