An algorithm with optimal convergence rate for solving Fredholm equations of the first kind
Authors
-
S.G. Solodky
-
E.V. Lebedeva
Keywords:
некорректная задача
метод регуляризации
принцип невязки
оптимальный порядок точности
дискретная информация
Abstract
The problem of finite-dimensional approximation for some classes of Fredholm equations of the first kind is considered in the case when the kernel and the right-hand side are given not exactly. An algorithm achieving an optimal order of accuracy for the recovery of normal solutions is proposed. This algorithm is based on the nonstationary iterated Tikhonov method, the generalized residual principle, and a multi-projection scheme of discretization. It is found that using this method leads to an required accuracy of approximation at economic expenses of discrete information in the form of Fourier-Legendre coefficients. The efficiency of numerical realization of the proposed algorithm is confirmed by a model example.
Section
Section 1. Numerical methods and applications
References
- Pereverzev S.V. Optimization of projection methods for solving ill-posed problems // Computing. 1995. 55. 113-124.
- Pereverzev S.V., Solodky S.G. An efficient discretization for solving ill-posed problems // Lect. Appl. Math. 1996. 32. 643-649.
- Solodky S.G. A generalized projection scheme for solving ill-posed problems // J. Inverse Ill Posed Probl. 1999. 7, N 2. 185-200.
- Томин Н.Г. Применение интерполяции линейных операторов к вопросам сходимости рядов коэффициентов Фурье по классическим ортогональным многочленам // Докл. АН СССР. 1973. 212, № 5. 1074-1077.
- Вайникко Г.М., Веретенников А.Ю. Итерационные процедуры в некорректных задачах. М.: Наука, 1986.
- Hanke M., Groetsch C.W. Nonstationary iterated Tikhonov regularization // Journal of Optimization Theory and Applications. 1998. 98. 37-53.
- Гончарский А.В., Леонов А.С., Ягола А.Г. Обобщенный принцип невязки // Журн. вычисл. матем. и матем. физ. 1973. 13, № 2. 294-302.
- Като Т. Теория возмущений линейных операторов. М.: Мир, 1972.
- Plato R., Vainikko G. On the regularization of projection methods for solving ill-posed problems // Numer. Math. 1990. 57. 63-79.
- Maass P., Pereversev S.V., Ramlau R., Solodky S.G. An adaptive discretization for Tikhonov- Phillips regularization with a posteriori parameter selection // Numer. Math. 2001. 87. 485-502.
- Solodky S.G., Lebedeva E. V. Bounds of information expenses in constructing projection methods for solving ill-posed problems // Comp. Method Appl. Math. 2006. 6, № 1. 87-93.
- Краснов М.Л., Киселев A.И., Макаренко Г.В. Интегральные уравнения. М.: Наука, 1976.