On two methods of approximate projection onto a stable manifold

Authors

Keywords:

стабилизация, неустойчивые решения, граничные условия, уравнения в частных производных, проектирование на устойчивое многообразие

Abstract

Methods of projection onto stable invariant manifolds are important for numerical stabilization in the case when boundary conditions for the solutions of nonlinear partial differential equations are used. This paper describes two different ways of projection (the zero-approximation method and the method of linearization); in the nonlinear case, these methods differ by the directions of displacements. Some numerical experiments of stabilizing the solution to the Chafee-Infante equation are discussed and analyzed for both these methods.

Author Biographies

S.V. Milutin

E.V. Chizhonkov

References

  1. Фурсиков А.В. Стабилизируемость квазилинейного параболического уравнения с помощью граничного управления с обратной связью // Матем. сборник. 2001. 192, № 4. 115-160.
  2. Корнев А.А. Классификация методов приближенного проектирования на устойчивое многообразие // Докл. РАН. 2005. 400, № 6. 1-3.
  3. Henry D. Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics. Vol. 840. Berlin: Springer-Verlag, 1981.
  4. Chizhonkov E.V., Ivanchikov A.A. On numerical stabilization of solutions of Stokes and Navier- Stokes equations by the boundary conditions // Rus. J. Numer. Anal. Math. Modelling. 2004. 19, N 6. 477-494.
  5. Chizhonkov E.V. Numerical aspects of one stabilization method // Rus. J. Numer. Anal. Math. Modelling. 2003. 18, N 5. 363-376.
  6. Чижонков Е.В. Об операторах проектирования для численной стабилизации // Вычисл. методы и программирование. 2004. 5, № 2. 42-50.
  7. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.
  8. Чижонков Е.В. Численная стабилизация квазилинейных параболических уравнений и уравнений типа Навье-Стокса с помощью граничных условий // Тр. Математического центра им. Н.И. Лобачевского. Казань: Изд-во Казанского Матем. общества, 2004. 71-120.
  9. Деммель Дж. Вычислительная линейная алгебра. М.: Мир, 2001.

Published

02-05-2007

How to Cite

Милютин С.В., Чижонков Е.В. On Two Methods of Approximate Projection onto a Stable Manifold // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2007. 8. 177-182

Issue

Section

Section 1. Numerical methods and applications

Most read articles by the same author(s)

1 2 > >>