Solution of 3D nonviscous compressible gas equations on unstructured meshes using the distributed computing approach

Authors

  • N.M. Evstigneev

Keywords:

трехмерные уравнения Эйлера
распределенные вычисления
неструктурированные сетки
задача Римана
невязкий газ
метод конечных объемов
параллельные вычисления

Abstract

A numerical method for solving the 3D nonviscous compressible gas equations on unstructured tetrahedral meshes is proposed. The method can be used for any complex geometry as well as to study any flow regimes. The numerical scheme of integration is based on the finite-volume modified E-CUSP approximate Riemann solver. For a higher-order approximation, a TVD-limiter approach is used. The computation speedup can be achieved by using the distributed computing on a TCP-IP network with cheap and easy-available PCs. Numerical and experimental results are compared for a special wing profile for the transonic regime of flow. The numerical method was proved to be accurate, flexible, and efficient and can be used to solve a wide range of complicated inflow and overflow aerodynamic problems.


Published

2007-10-02

Issue

Section

Section 1. Numerical methods and applications

Author Biography

N.M. Evstigneev


References

  1. Cignoni P., Montani C., Scopigno R. DeWall: A fast divide & conquer Delaunay triangulation algorithm in E愦灭;circd // Computer J. 2006. 19, N 2. 178-181.
  2. Su P., Drysdale R.L. S. A comparison of sequential Delaunay triangulation algorithms // Proc. 11th ACM Computational Geometry Conf. (Vancouver, Canada). New York: ACM Press, 1995. 61-70.
  3. Годунов С.К. Численное решение многомерных задач газовой динамики. М.: Наука, 1976.
  4. Roe P.L. Characteristic based schemes for the Euler equations // Annual Review of Fluid Mechanics. 1986. 18. 337-365.
  5. Van Leer B. Towards the ultimate conservative difference scheme // J. of Computational Physics. 1977. 23. 263-275.
  6. Billson M., Eriksson L.-E., Davidson L. Acoustics source terms for the linear Euler equations in conservative form // AIAA Paper, 2002-2582. 2002.
  7. Toro E. A weighted average flux method for hyperbolic conservation laws // Proc. Royal Soc. London A. 1989. 423. 401-418.
  8. Zha G.-C. A low diffusion efficient upwind scheme // AIAA Journal. 2005. 43. 1137-1140.
  9. Chunlei L., Evstigneev N. A study of kinetic energy conserving scheme using finite volume collocated grid for LES of a channel flow // Proc. Int. Conference on Numerical Methods in Fluid Dynamics. King’s College. London, 2006.
  10. Русанов В.В. Существование предельного профиля типа ударной волны для TVD-схем. Препринт № 177 ИПМ им. М.В. Келдыша АН СССР. М., 1986.
  11. Zha G.-C. Calculation of transonic internal flows using an efficient high resolution upwind scheme // AIAA Paper, 2006-257. 2006.
  12. Wada Y., Liou M.-S. An accurate and robust splitting scheme for shock and contact discontinuities // AIAA Paper, 1994-0083. 1994.
  13. Liou M.-S. Progress towards an improved CFD methods: AUSM+ // AIAA Paper, 1995-1701-CP. 1995.
  14. Edwards J. R. A low-diffusion flux-splitting scheme for Navier-Stokes calculations // Computer & Fluids. 1997. 6. 635-659.
  15. Евстигнеев Н.М. Решение задачи о течении несжимаемой жидкости в каверне с движущейся крышкой конечно-объемным методом интегрирования уравнений Навье-Стокса // Естественные и технические науки. 2005. № 1. 254-277.
  16. Sod G. A survey of several finite difference methods for systems of nonlinear hyperbolic conversation laws // J. of Computational Physics. 1978. 27. 1-31.
  17. Баландин М.Ю., Шурина Э.П. Методы решения СЛАУ большой размерности. Новосибирск: НГУ, 2000.
  18. Ваннер Г., Нерсетт С., Хайрер Э. Решение обыкновенных дифференциальных уравнений. М.: Мир, 1990.
  19. Evstigneev N. Parallel numerical method for incompressible 3D Euler equations on unstructured mesh for TCP/IP PC LAN // Proc. 4th Int. Conference on Parallel Computational Fluid Dynamics. Von Karmann Institute, Germany. 2007 (принята в печать).
  20. Schmitt V., Charpin F. Pressure distributions on the ONERA M6-wing at transonic Mach number // AGARD Advisory Report 138. 1979.
  21. Frink N.T. Upwind scheme for solving the Euler equations on unstructured tetrahedral meshes // Presentation at workshop on Accuracy of Unstructured Grid Techniques held at NASA Langley Research Center. 16-17 Jan. 1999.
  22. Steinhoff J., Fan M., Wang L. A new Eulerian method for the computation of propagating short acoustic and electromagnetic pulses // J. of Computational Physics. 2000. 157, N 2. 683-706.
  23. Anderson W.K. Grid generation and flow solution method for Euler equations on unstructured grid // J. of Computational Physics. 1994. 110, N 1. 23-38.